Displaying similar documents to “The local metric dimension of a graph”

The independent resolving number of a graph

Gary Chartrand, Varaporn Saenpholphat, Ping Zhang (2003)

Mathematica Bohemica

Similarity:

For an ordered set W = { w 1 , w 2 , , w k } of vertices in a connected graph G and a vertex v of G , the code of v with respect to W is the k -vector c W ( v ) = ( d ( v , w 1 ) , d ( v , w 2 ) , , d ( v , w k ) ) . The set W is an independent resolving set for G if (1) W is independent in G and (2) distinct vertices have distinct codes with respect to W . The cardinality of a minimum independent resolving set in G is the independent resolving number i r ( G ) . We study the existence of independent resolving sets in graphs, characterize all nontrivial connected graphs G of order...

The k -metric colorings of a graph

Futaba Fujie-Okamoto, Willem Renzema, Ping Zhang (2012)

Mathematica Bohemica

Similarity:

For a nontrivial connected graph G of order n , the detour distance D ( u , v ) between two vertices u and v in G is the length of a longest u - v path in G . Detour distance is a metric on the vertex set of G . For each integer k with 1 k n - 1 , a coloring c : V ( G ) is a k -metric coloring of G if | c ( u ) - c ( v ) | + D ( u , v ) k + 1 for every two distinct vertices u and v of G . The value χ m k ( c ) of a k -metric coloring c is the maximum color assigned by c to a vertex of G and the k -metric chromatic number χ m k ( G ) of G is the minimum value of a k -metric coloring...

Resolving domination in graphs

Robert C. Brigham, Gary Chartrand, Ronald D. Dutton, Ping Zhang (2003)

Mathematica Bohemica

Similarity:

For an ordered set W = { w 1 , w 2 , , w k } of vertices and a vertex v in a connected graph G , the (metric) representation of v with respect to W is the k -vector r ( v | W ) = ( d ( v , w 1 ) , d ( v , w 2 ) , , d ( v , w k ) ) , where d ( x , y ) represents the distance between the vertices x and y . The set W is a resolving set for G if distinct vertices of G have distinct representations with respect to W . A resolving set of minimum cardinality is called a minimum resolving set or a basis and the cardinality of a basis for G is its dimension dim G . A set S of vertices in G is a dominating...