top
We prove that if X is a compact topological space which contains a nontrivial metrizable connected closed subset, then the vector lattice C(X) does not carry any sygma-Lebesgue topology.
Aqzzouz, Belmesnaoui, and Nouira, Redouane. "Les topologies sygma-Lebesgue sur C(X).." Extracta Mathematicae 19.3 (2004): 313-316. <http://eudml.org/doc/38769>.
@article{Aqzzouz2004, author = {Aqzzouz, Belmesnaoui, Nouira, Redouane}, journal = {Extracta Mathematicae}, keywords = {Espacios lineales topológicos; Espacios normados; Orden; Retículo de Banach; locally solid topology; -Lebesgue topology; vector lattice}, language = {fre}, number = {3}, pages = {313-316}, title = {Les topologies sygma-Lebesgue sur C(X).}, url = {http://eudml.org/doc/38769}, volume = {19}, year = {2004}, }
TY - JOUR AU - Aqzzouz, Belmesnaoui AU - Nouira, Redouane TI - Les topologies sygma-Lebesgue sur C(X). JO - Extracta Mathematicae PY - 2004 VL - 19 IS - 3 SP - 313 EP - 316 LA - fre KW - Espacios lineales topológicos; Espacios normados; Orden; Retículo de Banach; locally solid topology; -Lebesgue topology; vector lattice UR - http://eudml.org/doc/38769 ER -