top
This paper deals with the relationship between two-dimensional parameter Gaussian random fields verifying a particular Markov property and the solutions of stochastic differential equations. In the non Gaussian case some diffusion conditions are introduced, obtaining a backward equation for the evolution of transition probability functions.
Nualart Rodón, David, and Sanz, M.. "A Markov property for two parameter Gaussian processes.." Stochastica 3.1 (1979): 1-16. <http://eudml.org/doc/38803>.
@article{NualartRodón1979, abstract = {This paper deals with the relationship between two-dimensional parameter Gaussian random fields verifying a particular Markov property and the solutions of stochastic differential equations. In the non Gaussian case some diffusion conditions are introduced, obtaining a backward equation for the evolution of transition probability functions.}, author = {Nualart Rodón, David, Sanz, M.}, journal = {Stochastica}, keywords = {Proceso de Gauss; Propiedad de Markov; Ecuaciones diferenciales estocásticas; Integración estocástica; Difusión; multiparameter Markov property; Brownian sheet; Gaussian processes; stochastic integrals}, language = {eng}, number = {1}, pages = {1-16}, title = {A Markov property for two parameter Gaussian processes.}, url = {http://eudml.org/doc/38803}, volume = {3}, year = {1979}, }
TY - JOUR AU - Nualart Rodón, David AU - Sanz, M. TI - A Markov property for two parameter Gaussian processes. JO - Stochastica PY - 1979 VL - 3 IS - 1 SP - 1 EP - 16 AB - This paper deals with the relationship between two-dimensional parameter Gaussian random fields verifying a particular Markov property and the solutions of stochastic differential equations. In the non Gaussian case some diffusion conditions are introduced, obtaining a backward equation for the evolution of transition probability functions. LA - eng KW - Proceso de Gauss; Propiedad de Markov; Ecuaciones diferenciales estocásticas; Integración estocástica; Difusión; multiparameter Markov property; Brownian sheet; Gaussian processes; stochastic integrals UR - http://eudml.org/doc/38803 ER -