# A simple proof of uniqueness for torsion modules over principal ideal domains.

Stochastica (1985)

- Volume: 9, Issue: 2, page 185-187
- ISSN: 0210-7821

## Access Full Article

top## Abstract

top## How to cite

topGarcía Roig, J. L.. "A simple proof of uniqueness for torsion modules over principal ideal domains.." Stochastica 9.2 (1985): 185-187. <http://eudml.org/doc/38930>.

@article{GarcíaRoig1985,

abstract = {The aim of this note is to give an alternative proof of uniqueness for the decomposition of a finitely generated torsion module over a P.I.D. (= principal ideal domain) as a direct sum of indecomposable submodules.Our proof tries to mimic as far as we can the standard procedures used when dealing with vector spaces.For the sake of completeness we also include a proof of the existence theorem.},

author = {García Roig, J. L.},

journal = {Stochastica},

keywords = {Módulos inyectivos; Elementos primos; Compleción de módulos; Irreducibilidad; Sucesiones exactas; decomposition of a finitely generated torsion module},

language = {eng},

number = {2},

pages = {185-187},

title = {A simple proof of uniqueness for torsion modules over principal ideal domains.},

url = {http://eudml.org/doc/38930},

volume = {9},

year = {1985},

}

TY - JOUR

AU - García Roig, J. L.

TI - A simple proof of uniqueness for torsion modules over principal ideal domains.

JO - Stochastica

PY - 1985

VL - 9

IS - 2

SP - 185

EP - 187

AB - The aim of this note is to give an alternative proof of uniqueness for the decomposition of a finitely generated torsion module over a P.I.D. (= principal ideal domain) as a direct sum of indecomposable submodules.Our proof tries to mimic as far as we can the standard procedures used when dealing with vector spaces.For the sake of completeness we also include a proof of the existence theorem.

LA - eng

KW - Módulos inyectivos; Elementos primos; Compleción de módulos; Irreducibilidad; Sucesiones exactas; decomposition of a finitely generated torsion module

UR - http://eudml.org/doc/38930

ER -