Global existence of solutions for the non linear Boltzmann equation of semiconductor physics.
Revista Matemática Iberoamericana (1990)
- Volume: 6, Issue: 1-2, page 43-59
- ISSN: 0213-2230
Access Full Article
topAbstract
topHow to cite
topMustieles, Francisco José. "Global existence of solutions for the non linear Boltzmann equation of semiconductor physics.." Revista Matemática Iberoamericana 6.1-2 (1990): 43-59. <http://eudml.org/doc/39395>.
@article{Mustieles1990,
abstract = {In this paper we give a proof of the existence and uniqueness of smooth solutions for the nonlinear semiconductor Boltzmann equation. The method used allows to obtain global existence in time and uniqueness for dimensions 1 and 2. For dimension 3 we can only assure local existence in time and uniqueness. First, we define a sequence of solutions for a linearized equation and then, we prove the strong convergence of the sequence in a suitable space. The metod relies on the use of interpolation estimates in order to control the decay of the solution when the wave vector goes to infinity.},
author = {Mustieles, Francisco José},
journal = {Revista Matemática Iberoamericana},
keywords = {Semiconductores; Ecuaciones diferenciales en derivadas parciales; Alineal; Teorema de existencia; Soluciones; Boltzmann equation; semiconductors; Vlasov-Fokker-Planck equation; nonlinear integral operators; global existence; local existence; uniqueness},
language = {eng},
number = {1-2},
pages = {43-59},
title = {Global existence of solutions for the non linear Boltzmann equation of semiconductor physics.},
url = {http://eudml.org/doc/39395},
volume = {6},
year = {1990},
}
TY - JOUR
AU - Mustieles, Francisco José
TI - Global existence of solutions for the non linear Boltzmann equation of semiconductor physics.
JO - Revista Matemática Iberoamericana
PY - 1990
VL - 6
IS - 1-2
SP - 43
EP - 59
AB - In this paper we give a proof of the existence and uniqueness of smooth solutions for the nonlinear semiconductor Boltzmann equation. The method used allows to obtain global existence in time and uniqueness for dimensions 1 and 2. For dimension 3 we can only assure local existence in time and uniqueness. First, we define a sequence of solutions for a linearized equation and then, we prove the strong convergence of the sequence in a suitable space. The metod relies on the use of interpolation estimates in order to control the decay of the solution when the wave vector goes to infinity.
LA - eng
KW - Semiconductores; Ecuaciones diferenciales en derivadas parciales; Alineal; Teorema de existencia; Soluciones; Boltzmann equation; semiconductors; Vlasov-Fokker-Planck equation; nonlinear integral operators; global existence; local existence; uniqueness
UR - http://eudml.org/doc/39395
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.