On the derivation of a quantum Boltzmann equation from the periodic Von-Neumann equation

François Castella

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 2, page 329-349
  • ISSN: 0764-583X

How to cite

top

Castella, François. "On the derivation of a quantum Boltzmann equation from the periodic Von-Neumann equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.2 (1999): 329-349. <http://eudml.org/doc/193923>.

@article{Castella1999,
author = {Castella, François},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {quantum Boltzmann equation; Fermi golden rule; time-irreversibility; memory effects; weak-coupling limit; semi-conductor Boltzmann equation; von Neumann equation; asymptotics},
language = {eng},
number = {2},
pages = {329-349},
publisher = {Dunod},
title = {On the derivation of a quantum Boltzmann equation from the periodic Von-Neumann equation},
url = {http://eudml.org/doc/193923},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Castella, François
TI - On the derivation of a quantum Boltzmann equation from the periodic Von-Neumann equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 2
SP - 329
EP - 349
LA - eng
KW - quantum Boltzmann equation; Fermi golden rule; time-irreversibility; memory effects; weak-coupling limit; semi-conductor Boltzmann equation; von Neumann equation; asymptotics
UR - http://eudml.org/doc/193923
ER -

References

top
  1. [1] J.R. Barker, Fundamental aspects of Quantum Transport, in Handbook on Semiconductors, T.S. Moss Ed., North-Holland (1982). 
  2. [2] N. Ben Abdallah and P. Degond, On a hierarchy of macroscopic models for semi-conductors. J. Math. Phys. 37 (1996) 3306-3333. Zbl0868.45006MR1401227
  3. [3] J. Bourgain, F. Golse and B. Wennberg, On the distribution of free path lengths for the periodic Lorentz gas. Comm. Math. Phys. 190 (1998) 491-508. Zbl0910.60082MR1600299
  4. [4] A.O. Caldeira and A.J. Leggett, Path Integral Approach to Brownian Motion. Physica A 121 (1983) 587-616. Zbl0585.60082MR726154
  5. [5] D. Calecki, Lecture, University of Paris 6 (1997). 
  6. [6] F. Castella, Ph.D. thesis, University of Paris VI, France (1997). 
  7. [7] F. Castella and P. Degond, The Von-Neumann equation with deterministic potential converges towards the Quantum Boltzmann equation. Preprint (1999). Zbl0930.35146
  8. [8] F. Castella, L. Erdös, F. Frommlet and P.A. Markowich, Caldeira-Leggett Master equation. Work in progress (1999). 
  9. [9] C. Cohen-Tannoudji, B. Diu and F. Laloë, Mécanique Quantique, I et II, Enseignement des Sciences, Vol. 16. Hermann (1973). 
  10. [10] L. Erdös and H.T. Yau, Linear Boltzmann equation as scaling limit of quantum Lorentz gas. Preprint (1998). Zbl0894.35027
  11. [11] R. Esposito, M. Pulvirenti and A. Teta, The Boltzmann Equation for a one-dimensional Quantum Lorentz gas. Preprint (1998). Zbl0940.35167
  12. [12] T.G. Ho, L.J. Landau and A.J. Wilkins, On the weak coupling limit for a Fermi gas in a random potential. Rev. Math, Phys,5 (1993) 209-298. Zbl0816.46079
  13. [13] R. Jancel, Foundations of Classical and Quantum Statistical Mechanics. Pergamon, Braunschweig (1969). 
  14. [14] W. Kohn and J.M. Luttinger, Phys. Rev. 108 (1957) 590-611. Zbl0092.21901
  15. [15] W. Kohn and J.M. Luttinger, Phys. Rev. 109 (1958) 1892. Zbl0092.21902
  16. [16] H.J. Kreuzer, Nonequilibrium thermodynamics and its statistical foundations. Monographs on Physics and Chemistry of Materials. Oxford Science Publications (1983). MR602695
  17. [17] R. Kubo, J. Phys. Soc. Jap. 12 (1957) 570. MR98482
  18. [18] P.L. Lions and T. Paul, Sur les mesures de Wigner. Revista Matematica ibero americana 9 (1993) 553-618. Zbl0801.35117MR1251718
  19. [19] J.M. Luttinger, Mathematical Methods in Solid State and Superfluid Theory, Oliver and Boyd Eds. (1968) 157. 
  20. [20] A. Majorana and S.A. Marano, Space homogeneous solutions to the Cauchy problem for the semi-conductor Boltzmann equation. SIAM J. Math. Anal. 28 (1997) 1294-1308. Zbl0896.45006MR1474215
  21. [21] P.A. Markowich, C. Ringhoffer and C. Schmeiser, Semiconductor equations. Springer-Verlag, Wien (1990). Zbl0765.35001MR1063852
  22. [22] P.A. Markowich and C. Schmeiser, The drift-diffus ion limit for electron-phonon interaction in semiconductors. Math. Mod. Meth. Appl. Sci. 7 (1997) 707-729. Zbl0884.45006MR1460701
  23. [23] F.J. Mustieles, Global existence of solutions for the non-linear Boltzmann equation of semiconductors physics. Rev. Mat. Iberoam. 6 (1990) 43-59. Zbl0728.45010MR1086150
  24. [24] F. Nier, Asymptotic Analysis of a scaled Wigner equation and Quantum Scattering. Transp. Theor. Stat. Phys. 24 (1995) 591-629. Zbl0870.45003MR1321368
  25. [25] F. Nier, A semi-classical picture of quantum scattering. Ann. Sci. Ec. Norm. Sup. 29 (1996) 149-183. Zbl0858.35106MR1373932
  26. [26] W. Pauli, Festschrift zum 60 Geburtstage A. Sommerfelds. Hirzel, Leipzig (1928) 30. 
  27. [27] I. Prigogine, Non-Equilibrium Statistical Mechanics. Interscience, New-York (1962). Zbl0106.43301MR187841
  28. [28] H. Spohn, Derivation of the transport equation for electrons moving through random impurities. J. Stat. Phys. 17 (1997) 385-412. Zbl0964.82508MR471824
  29. [29] L. Van Hove, Physica 21 (1955) 517-540. Zbl0065.19505MR71346
  30. [30] L. Van Hove, Physica 23 (1957) 441. Zbl0079.19405MR89576
  31. [31] L. Van Hove, in Fundamental Problems in Statistical Mechanics, E.G.D. Cohen Ed. (1962) 157. 
  32. [32] N.G. Van Kampen, Stochastic processes in physics and chemistry, Lecture Notes in Mathematics. North-Holland 888 (1981). Zbl0511.60038MR648937
  33. [33] R. Zwanzig, Quantum Statistical Mechanics, P.H.E. Meijer Ed., Gordon and Breach, New-York (1966). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.