On the derivation of a quantum Boltzmann equation from the periodic Von-Neumann equation
- Volume: 33, Issue: 2, page 329-349
- ISSN: 0764-583X
Access Full Article
topHow to cite
topCastella, François. "On the derivation of a quantum Boltzmann equation from the periodic Von-Neumann equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.2 (1999): 329-349. <http://eudml.org/doc/193923>.
@article{Castella1999,
author = {Castella, François},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {quantum Boltzmann equation; Fermi golden rule; time-irreversibility; memory effects; weak-coupling limit; semi-conductor Boltzmann equation; von Neumann equation; asymptotics},
language = {eng},
number = {2},
pages = {329-349},
publisher = {Dunod},
title = {On the derivation of a quantum Boltzmann equation from the periodic Von-Neumann equation},
url = {http://eudml.org/doc/193923},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Castella, François
TI - On the derivation of a quantum Boltzmann equation from the periodic Von-Neumann equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 2
SP - 329
EP - 349
LA - eng
KW - quantum Boltzmann equation; Fermi golden rule; time-irreversibility; memory effects; weak-coupling limit; semi-conductor Boltzmann equation; von Neumann equation; asymptotics
UR - http://eudml.org/doc/193923
ER -
References
top- [1] J.R. Barker, Fundamental aspects of Quantum Transport, in Handbook on Semiconductors, T.S. Moss Ed., North-Holland (1982).
- [2] N. Ben Abdallah and P. Degond, On a hierarchy of macroscopic models for semi-conductors. J. Math. Phys. 37 (1996) 3306-3333. Zbl0868.45006MR1401227
- [3] J. Bourgain, F. Golse and B. Wennberg, On the distribution of free path lengths for the periodic Lorentz gas. Comm. Math. Phys. 190 (1998) 491-508. Zbl0910.60082MR1600299
- [4] A.O. Caldeira and A.J. Leggett, Path Integral Approach to Brownian Motion. Physica A 121 (1983) 587-616. Zbl0585.60082MR726154
- [5] D. Calecki, Lecture, University of Paris 6 (1997).
- [6] F. Castella, Ph.D. thesis, University of Paris VI, France (1997).
- [7] F. Castella and P. Degond, The Von-Neumann equation with deterministic potential converges towards the Quantum Boltzmann equation. Preprint (1999). Zbl0930.35146
- [8] F. Castella, L. Erdös, F. Frommlet and P.A. Markowich, Caldeira-Leggett Master equation. Work in progress (1999).
- [9] C. Cohen-Tannoudji, B. Diu and F. Laloë, Mécanique Quantique, I et II, Enseignement des Sciences, Vol. 16. Hermann (1973).
- [10] L. Erdös and H.T. Yau, Linear Boltzmann equation as scaling limit of quantum Lorentz gas. Preprint (1998). Zbl0894.35027
- [11] R. Esposito, M. Pulvirenti and A. Teta, The Boltzmann Equation for a one-dimensional Quantum Lorentz gas. Preprint (1998). Zbl0940.35167
- [12] T.G. Ho, L.J. Landau and A.J. Wilkins, On the weak coupling limit for a Fermi gas in a random potential. Rev. Math, Phys,5 (1993) 209-298. Zbl0816.46079
- [13] R. Jancel, Foundations of Classical and Quantum Statistical Mechanics. Pergamon, Braunschweig (1969).
- [14] W. Kohn and J.M. Luttinger, Phys. Rev. 108 (1957) 590-611. Zbl0092.21901
- [15] W. Kohn and J.M. Luttinger, Phys. Rev. 109 (1958) 1892. Zbl0092.21902
- [16] H.J. Kreuzer, Nonequilibrium thermodynamics and its statistical foundations. Monographs on Physics and Chemistry of Materials. Oxford Science Publications (1983). MR602695
- [17] R. Kubo, J. Phys. Soc. Jap. 12 (1957) 570. MR98482
- [18] P.L. Lions and T. Paul, Sur les mesures de Wigner. Revista Matematica ibero americana 9 (1993) 553-618. Zbl0801.35117MR1251718
- [19] J.M. Luttinger, Mathematical Methods in Solid State and Superfluid Theory, Oliver and Boyd Eds. (1968) 157.
- [20] A. Majorana and S.A. Marano, Space homogeneous solutions to the Cauchy problem for the semi-conductor Boltzmann equation. SIAM J. Math. Anal. 28 (1997) 1294-1308. Zbl0896.45006MR1474215
- [21] P.A. Markowich, C. Ringhoffer and C. Schmeiser, Semiconductor equations. Springer-Verlag, Wien (1990). Zbl0765.35001MR1063852
- [22] P.A. Markowich and C. Schmeiser, The drift-diffus ion limit for electron-phonon interaction in semiconductors. Math. Mod. Meth. Appl. Sci. 7 (1997) 707-729. Zbl0884.45006MR1460701
- [23] F.J. Mustieles, Global existence of solutions for the non-linear Boltzmann equation of semiconductors physics. Rev. Mat. Iberoam. 6 (1990) 43-59. Zbl0728.45010MR1086150
- [24] F. Nier, Asymptotic Analysis of a scaled Wigner equation and Quantum Scattering. Transp. Theor. Stat. Phys. 24 (1995) 591-629. Zbl0870.45003MR1321368
- [25] F. Nier, A semi-classical picture of quantum scattering. Ann. Sci. Ec. Norm. Sup. 29 (1996) 149-183. Zbl0858.35106MR1373932
- [26] W. Pauli, Festschrift zum 60 Geburtstage A. Sommerfelds. Hirzel, Leipzig (1928) 30.
- [27] I. Prigogine, Non-Equilibrium Statistical Mechanics. Interscience, New-York (1962). Zbl0106.43301MR187841
- [28] H. Spohn, Derivation of the transport equation for electrons moving through random impurities. J. Stat. Phys. 17 (1997) 385-412. Zbl0964.82508MR471824
- [29] L. Van Hove, Physica 21 (1955) 517-540. Zbl0065.19505MR71346
- [30] L. Van Hove, Physica 23 (1957) 441. Zbl0079.19405MR89576
- [31] L. Van Hove, in Fundamental Problems in Statistical Mechanics, E.G.D. Cohen Ed. (1962) 157.
- [32] N.G. Van Kampen, Stochastic processes in physics and chemistry, Lecture Notes in Mathematics. North-Holland 888 (1981). Zbl0511.60038MR648937
- [33] R. Zwanzig, Quantum Statistical Mechanics, P.H.E. Meijer Ed., Gordon and Breach, New-York (1966).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.