Local properties of stationary solutions of some nonlinear singular Schrödinger equations.
Bouchaib Guerch; Laurent Véron
Revista Matemática Iberoamericana (1991)
- Volume: 7, Issue: 1, page 65-114
- ISSN: 0213-2230
Access Full Article
topAbstract
topHow to cite
topGuerch, Bouchaib, and Véron, Laurent. "Local properties of stationary solutions of some nonlinear singular Schrödinger equations.." Revista Matemática Iberoamericana 7.1 (1991): 65-114. <http://eudml.org/doc/39405>.
@article{Guerch1991,
abstract = {We study the local behaviour of solutions of the following type of equation,-Δu - V(x)u + g(u) = 0 when V is singular at some points and g is a non-decreasing function. Emphasis is put on the case when V(x) = c|x|-2 and g has a power-like growth.},
author = {Guerch, Bouchaib, Véron, Laurent},
journal = {Revista Matemática Iberoamericana},
keywords = {Ecuación de Schrödinger; Ecuaciones no lineales; Estacionario; Singularidades; Soluciones; Localización; time-independent, -dimensional, nonlinear Schrödinger equation; isolated singularity},
language = {eng},
number = {1},
pages = {65-114},
title = {Local properties of stationary solutions of some nonlinear singular Schrödinger equations.},
url = {http://eudml.org/doc/39405},
volume = {7},
year = {1991},
}
TY - JOUR
AU - Guerch, Bouchaib
AU - Véron, Laurent
TI - Local properties of stationary solutions of some nonlinear singular Schrödinger equations.
JO - Revista Matemática Iberoamericana
PY - 1991
VL - 7
IS - 1
SP - 65
EP - 114
AB - We study the local behaviour of solutions of the following type of equation,-Δu - V(x)u + g(u) = 0 when V is singular at some points and g is a non-decreasing function. Emphasis is put on the case when V(x) = c|x|-2 and g has a power-like growth.
LA - eng
KW - Ecuación de Schrödinger; Ecuaciones no lineales; Estacionario; Singularidades; Soluciones; Localización; time-independent, -dimensional, nonlinear Schrödinger equation; isolated singularity
UR - http://eudml.org/doc/39405
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.