top
We continue the study of multilinear operators given by products of finite vectors of Calderón-Zygmund operators. We determine the set of all r ≤ 1 for which these operators map products of Lebesgue spaces Lp(Rn) into the Hardy spaces Hr(Rn). At the endpoint case r = n/(n + m + 1), where m is the highest vanishing moment of the multilinear operator, we prove a weak type result.
Grafakos, Loukas. "Hardy space estimates for multilinear operators (II).." Revista Matemática Iberoamericana 8.1 (1992): 69-92. <http://eudml.org/doc/39411>.
@article{Grafakos1992, abstract = {We continue the study of multilinear operators given by products of finite vectors of Calderón-Zygmund operators. We determine the set of all r ≤ 1 for which these operators map products of Lebesgue spaces Lp(Rn) into the Hardy spaces Hr(Rn). At the endpoint case r = n/(n + m + 1), where m is the highest vanishing moment of the multilinear operator, we prove a weak type result.}, author = {Grafakos, Loukas}, journal = {Revista Matemática Iberoamericana}, keywords = {Espacios de Hardy; Conjuntos de Lebesgue; Convergencia débil; Operadores lineales; multilinear operators; products of finite vectors of Calderón-Zygmund operators; moment}, language = {eng}, number = {1}, pages = {69-92}, title = {Hardy space estimates for multilinear operators (II).}, url = {http://eudml.org/doc/39411}, volume = {8}, year = {1992}, }
TY - JOUR AU - Grafakos, Loukas TI - Hardy space estimates for multilinear operators (II). JO - Revista Matemática Iberoamericana PY - 1992 VL - 8 IS - 1 SP - 69 EP - 92 AB - We continue the study of multilinear operators given by products of finite vectors of Calderón-Zygmund operators. We determine the set of all r ≤ 1 for which these operators map products of Lebesgue spaces Lp(Rn) into the Hardy spaces Hr(Rn). At the endpoint case r = n/(n + m + 1), where m is the highest vanishing moment of the multilinear operator, we prove a weak type result. LA - eng KW - Espacios de Hardy; Conjuntos de Lebesgue; Convergencia débil; Operadores lineales; multilinear operators; products of finite vectors of Calderón-Zygmund operators; moment UR - http://eudml.org/doc/39411 ER -