On multilinear fractional integrals

Loukas Grafakos

Studia Mathematica (1992)

  • Volume: 102, Issue: 1, page 49-56
  • ISSN: 0039-3223

Abstract

top
In n , we prove L p × . . . × L p K boundedness for the multilinear fractional integrals I α ( f , . . . , f K ) ( x ) = ʃ f ( x - θ y ) . . . f K ( x - θ K y ) | y | α - n d y where the θ j ’s are nonzero and distinct. We also prove multilinear versions of two inequalities for fractional integrals and a multilinear Lebesgue differentiation theorem.

How to cite

top

Grafakos, Loukas. "On multilinear fractional integrals." Studia Mathematica 102.1 (1992): 49-56. <http://eudml.org/doc/215913>.

@article{Grafakos1992,
abstract = {In $ℝ^n$, we prove $L^\{p₁\} ×...× L^\{p_\{K\}\}$ boundedness for the multilinear fractional integrals $I_α(f₁,...,f_K)(x) = ʃ f₁(x-θ₁ y)...f_K(x-θ_K y)|y|^\{α-n\} dy$ where the $θ_j$’s are nonzero and distinct. We also prove multilinear versions of two inequalities for fractional integrals and a multilinear Lebesgue differentiation theorem.},
author = {Grafakos, Loukas},
journal = {Studia Mathematica},
keywords = {Hardy-Littlewood maximal function; multilinear fractional integrals; inequalities; multilinear Lebesgue differentiation theorem},
language = {eng},
number = {1},
pages = {49-56},
title = {On multilinear fractional integrals},
url = {http://eudml.org/doc/215913},
volume = {102},
year = {1992},
}

TY - JOUR
AU - Grafakos, Loukas
TI - On multilinear fractional integrals
JO - Studia Mathematica
PY - 1992
VL - 102
IS - 1
SP - 49
EP - 56
AB - In $ℝ^n$, we prove $L^{p₁} ×...× L^{p_{K}}$ boundedness for the multilinear fractional integrals $I_α(f₁,...,f_K)(x) = ʃ f₁(x-θ₁ y)...f_K(x-θ_K y)|y|^{α-n} dy$ where the $θ_j$’s are nonzero and distinct. We also prove multilinear versions of two inequalities for fractional integrals and a multilinear Lebesgue differentiation theorem.
LA - eng
KW - Hardy-Littlewood maximal function; multilinear fractional integrals; inequalities; multilinear Lebesgue differentiation theorem
UR - http://eudml.org/doc/215913
ER -

References

top
  1. [A] D. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. 128 (1988), 385-398. Zbl0672.31008
  2. [CM] S.-Y. A. Chang and D. E. Marshall, On a sharp inequality concerning the Dirichlet integral, Amer. J. Math. 107 (1985), 1015-1033. Zbl0578.30010
  3. [CG] R. R. Coifman and L. Grafakos, Hardy space estimates for multilinear operators I, Rev. Mat. Iberoamericana, to appear. Zbl0785.47025
  4. [G] L. Grafakos, Hardy space estimates for multilinear operators II, Rev. Mat. Iberoamericana, to appear. Zbl0785.47026
  5. [HE] L. I. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505-510. Zbl0283.26003
  6. [HMT] J. A. Hempel, G. R. Morris and N. S. Trudinger, On the sharpness of a limiting case of the Sobolev embedding theorem, Bull. Austral. Math. Soc. 3 (1970), 369-373. Zbl0205.12801
  7. [HI] I. I. Hirschman Jr., A convexity theorem for certain groups of transformations, J. Analyse Math. 2 (1953), 209-218. Zbl0052.06302
  8. [M] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077-1092. Zbl0203.43701
  9. [ST] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. Zbl0207.13501
  10. [SWE] E. M. Stein and G. Weiss, An Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971. 
  11. [STR] R. S. Strichartz, A note on Trudinger's extension of Sobolev's inequalities, Indiana Univ. Math. J. 21 (1972), 841-842. Zbl0241.46028
  12. [T] N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483. Zbl0163.36402

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.