Kato's conjecture on open sets of R.

Pascal Auscher; Philippe Tchamitchian

Revista Matemática Iberoamericana (1992)

  • Volume: 8, Issue: 2, page 149-199
  • ISSN: 0213-2230

Abstract

top
We prove Kato's conjecture for second order elliptic differential operators on an open set in dimension 1 with arbitrary boundary conditions. The general case reduces to studying the operator T = - d/dx a(x) d/dx on an interval, when a(x) is a bounded and accretive function. We show for the latter situation that the domain of T is spanned by an unconditional basis of wavelets with cancellation properties that compensate the action of the non-regular function a(x).

How to cite

top

Auscher, Pascal, and Tchamitchian, Philippe. "Conjetura de Kato sobre los abiertos de R.." Revista Matemática Iberoamericana 8.2 (1992): 149-199. <http://eudml.org/doc/39423>.

@article{Auscher1992,
author = {Auscher, Pascal, Tchamitchian, Philippe},
journal = {Revista Matemática Iberoamericana},
keywords = {Operadores diferenciales; Operadores elípticos; Espacios de Hilbert; Ondas; Sistemas abiertos; Kato's conjecture; unconditional basis of wavelets},
language = {spa},
number = {2},
pages = {149-199},
title = {Conjetura de Kato sobre los abiertos de R.},
url = {http://eudml.org/doc/39423},
volume = {8},
year = {1992},
}

TY - JOUR
AU - Auscher, Pascal
AU - Tchamitchian, Philippe
TI - Conjetura de Kato sobre los abiertos de R.
JO - Revista Matemática Iberoamericana
PY - 1992
VL - 8
IS - 2
SP - 149
EP - 199
LA - spa
KW - Operadores diferenciales; Operadores elípticos; Espacios de Hilbert; Ondas; Sistemas abiertos; Kato's conjecture; unconditional basis of wavelets
UR - http://eudml.org/doc/39423
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.