Initial traces of solutions to a one-phase Stefan problem in an infinite strip.
Daniele Andreucci; Marianne K. Korten
Revista Matemática Iberoamericana (1993)
- Volume: 9, Issue: 2, page 315-332
- ISSN: 0213-2230
Access Full Article
topAbstract
topHow to cite
topAndreucci, Daniele, and Korten, Marianne K.. "Initial traces of solutions to a one-phase Stefan problem in an infinite strip.." Revista Matemática Iberoamericana 9.2 (1993): 315-332. <http://eudml.org/doc/39441>.
@article{Andreucci1993,
	abstract = {The main result of this paper is an integral estimate valid for non-negative solutions (with no reference to initial data) u ∈ L1loc (Rn x (0,T)) to(0.1)   ut - Δ(u - 1)+ = 0,  in D'(Rn x (0,T)),for T > 0, n ≥ 1. Equation (0.1) is a formulation of a one-phase Stefan problem: in this connection u is the enthalpy, (u - 1)+ the temperature, and u = 1 the critical temperature of change of phase. Our estimate may be written in the form(0.2)  ∫Rn u(x,t) e-|x|2 / (2 (T - t)) dx ≤ C,   0 < t < T,where C depends on n, T, t, u but it stays bounded as T → 0.},
	author = {Andreucci, Daniele, Korten, Marianne K.},
	journal = {Revista Matemática Iberoamericana},
	keywords = {Trazas; Cambio de fase; Medida de Radón; Problema de Cauchy; Regularidad; regularity; a priori estimate; existence and uniqueness of an initial trace; existence of a unique solution to the Cauchy problem},
	language = {eng},
	number = {2},
	pages = {315-332},
	title = {Initial traces of solutions to a one-phase Stefan problem in an infinite strip.},
	url = {http://eudml.org/doc/39441},
	volume = {9},
	year = {1993},
}
TY  - JOUR
AU  - Andreucci, Daniele
AU  - Korten, Marianne K.
TI  - Initial traces of solutions to a one-phase Stefan problem in an infinite strip.
JO  - Revista Matemática Iberoamericana
PY  - 1993
VL  - 9
IS  - 2
SP  - 315
EP  - 332
AB  - The main result of this paper is an integral estimate valid for non-negative solutions (with no reference to initial data) u ∈ L1loc (Rn x (0,T)) to(0.1)   ut - Δ(u - 1)+ = 0,  in D'(Rn x (0,T)),for T > 0, n ≥ 1. Equation (0.1) is a formulation of a one-phase Stefan problem: in this connection u is the enthalpy, (u - 1)+ the temperature, and u = 1 the critical temperature of change of phase. Our estimate may be written in the form(0.2)  ∫Rn u(x,t) e-|x|2 / (2 (T - t)) dx ≤ C,   0 < t < T,where C depends on n, T, t, u but it stays bounded as T → 0.
LA  - eng
KW  - Trazas; Cambio de fase; Medida de Radón; Problema de Cauchy; Regularidad; regularity; a priori estimate; existence and uniqueness of an initial trace; existence of a unique solution to the Cauchy problem
UR  - http://eudml.org/doc/39441
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
