Removable sets for Lipschitz harmonic functions in the plane.

Guy David; Pertti Mattila

Revista Matemática Iberoamericana (2000)

  • Volume: 16, Issue: 1, page 137-215
  • ISSN: 0213-2230

Abstract

top
The main motivation for this work comes from the century-old Painlevé problem: try to characterize geometrically removable sets for bounded analytic functions in C.

How to cite

top

David, Guy, and Mattila, Pertti. "Removable sets for Lipschitz harmonic functions in the plane.." Revista Matemática Iberoamericana 16.1 (2000): 137-215. <http://eudml.org/doc/39585>.

@article{David2000,
abstract = {The main motivation for this work comes from the century-old Painlevé problem: try to characterize geometrically removable sets for bounded analytic functions in C.},
author = {David, Guy, Mattila, Pertti},
journal = {Revista Matemática Iberoamericana},
keywords = {Función armónica; Función lipschitziana; Análisis complejo; harmonic function; Lipschitz function; Cauchy transform; Melnikov curvature; rectifiable curve},
language = {eng},
number = {1},
pages = {137-215},
title = {Removable sets for Lipschitz harmonic functions in the plane.},
url = {http://eudml.org/doc/39585},
volume = {16},
year = {2000},
}

TY - JOUR
AU - David, Guy
AU - Mattila, Pertti
TI - Removable sets for Lipschitz harmonic functions in the plane.
JO - Revista Matemática Iberoamericana
PY - 2000
VL - 16
IS - 1
SP - 137
EP - 215
AB - The main motivation for this work comes from the century-old Painlevé problem: try to characterize geometrically removable sets for bounded analytic functions in C.
LA - eng
KW - Función armónica; Función lipschitziana; Análisis complejo; harmonic function; Lipschitz function; Cauchy transform; Melnikov curvature; rectifiable curve
UR - http://eudml.org/doc/39585
ER -

NotesEmbed ?

top

You must be logged in to post comments.