top
The main motivation for this work comes from the century-old Painlevé problem: try to characterize geometrically removable sets for bounded analytic functions in C.
David, Guy, and Mattila, Pertti. "Removable sets for Lipschitz harmonic functions in the plane.." Revista Matemática Iberoamericana 16.1 (2000): 137-215. <http://eudml.org/doc/39585>.
@article{David2000, abstract = {The main motivation for this work comes from the century-old Painlevé problem: try to characterize geometrically removable sets for bounded analytic functions in C.}, author = {David, Guy, Mattila, Pertti}, journal = {Revista Matemática Iberoamericana}, keywords = {Función armónica; Función lipschitziana; Análisis complejo; harmonic function; Lipschitz function; Cauchy transform; Melnikov curvature; rectifiable curve}, language = {eng}, number = {1}, pages = {137-215}, title = {Removable sets for Lipschitz harmonic functions in the plane.}, url = {http://eudml.org/doc/39585}, volume = {16}, year = {2000}, }
TY - JOUR AU - David, Guy AU - Mattila, Pertti TI - Removable sets for Lipschitz harmonic functions in the plane. JO - Revista Matemática Iberoamericana PY - 2000 VL - 16 IS - 1 SP - 137 EP - 215 AB - The main motivation for this work comes from the century-old Painlevé problem: try to characterize geometrically removable sets for bounded analytic functions in C. LA - eng KW - Función armónica; Función lipschitziana; Análisis complejo; harmonic function; Lipschitz function; Cauchy transform; Melnikov curvature; rectifiable curve UR - http://eudml.org/doc/39585 ER -