Minimal resolutions of lattice ideals and integer linear programming.

Emilio Briales-Morales; Antonio Campillo-López; Pilar Pisón-Casares; Alberto Vigneron-Tenorio

Revista Matemática Iberoamericana (2003)

  • Volume: 19, Issue: 2, page 287-306
  • ISSN: 0213-2230

Abstract

top
A combinatorial description of the minimal free resolution of a lattice ideal allows us to the connection of Integer Linear Programming and Al1gebra. The non null reduced homology spaces of some simplicial complexes are the key. The extremal rays of the associated cone reduce the number of variables.

How to cite

top

Briales-Morales, Emilio, et al. "Minimal resolutions of lattice ideals and integer linear programming.." Revista Matemática Iberoamericana 19.2 (2003): 287-306. <http://eudml.org/doc/39592>.

@article{Briales2003,
abstract = {A combinatorial description of the minimal free resolution of a lattice ideal allows us to the connection of Integer Linear Programming and Al1gebra. The non null reduced homology spaces of some simplicial complexes are the key. The extremal rays of the associated cone reduce the number of variables.},
author = {Briales-Morales, Emilio, Campillo-López, Antonio, Pisón-Casares, Pilar, Vigneron-Tenorio, Alberto},
journal = {Revista Matemática Iberoamericana},
keywords = {Geometría algebraica; Ideales; Retículo; Semigrupos; Programación entera; resolutions; simplicial complex; syzygy; lattice ideal; integer linear programming},
language = {eng},
number = {2},
pages = {287-306},
title = {Minimal resolutions of lattice ideals and integer linear programming.},
url = {http://eudml.org/doc/39592},
volume = {19},
year = {2003},
}

TY - JOUR
AU - Briales-Morales, Emilio
AU - Campillo-López, Antonio
AU - Pisón-Casares, Pilar
AU - Vigneron-Tenorio, Alberto
TI - Minimal resolutions of lattice ideals and integer linear programming.
JO - Revista Matemática Iberoamericana
PY - 2003
VL - 19
IS - 2
SP - 287
EP - 306
AB - A combinatorial description of the minimal free resolution of a lattice ideal allows us to the connection of Integer Linear Programming and Al1gebra. The non null reduced homology spaces of some simplicial complexes are the key. The extremal rays of the associated cone reduce the number of variables.
LA - eng
KW - Geometría algebraica; Ideales; Retículo; Semigrupos; Programación entera; resolutions; simplicial complex; syzygy; lattice ideal; integer linear programming
UR - http://eudml.org/doc/39592
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.