Mapping properties of the elliptic maximal function.
Revista Matemática Iberoamericana (2003)
- Volume: 19, Issue: 1, page 221-234
- ISSN: 0213-2230
Access Full Article
topAbstract
topHow to cite
topErdogan, M. Burak. "Mapping properties of the elliptic maximal function.." Revista Matemática Iberoamericana 19.1 (2003): 221-234. <http://eudml.org/doc/39692>.
@article{Erdogan2003,
abstract = {We prove that the elliptic maximal function maps the Sobolev space W4,eta(R2) into L4(R2) for all eta > 1/6. The main ingredients of the proof are an analysis of the intersectiQn properties of elliptic annuli and a combinatorial method of Kolasa and Wolff.},
author = {Erdogan, M. Burak},
journal = {Revista Matemática Iberoamericana},
keywords = {Análisis de Fourier; Operadores maximales; Espacios de Sobolev; maximal functions; circular maximal functions; Sobolev space},
language = {eng},
number = {1},
pages = {221-234},
title = {Mapping properties of the elliptic maximal function.},
url = {http://eudml.org/doc/39692},
volume = {19},
year = {2003},
}
TY - JOUR
AU - Erdogan, M. Burak
TI - Mapping properties of the elliptic maximal function.
JO - Revista Matemática Iberoamericana
PY - 2003
VL - 19
IS - 1
SP - 221
EP - 234
AB - We prove that the elliptic maximal function maps the Sobolev space W4,eta(R2) into L4(R2) for all eta > 1/6. The main ingredients of the proof are an analysis of the intersectiQn properties of elliptic annuli and a combinatorial method of Kolasa and Wolff.
LA - eng
KW - Análisis de Fourier; Operadores maximales; Espacios de Sobolev; maximal functions; circular maximal functions; Sobolev space
UR - http://eudml.org/doc/39692
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.