A note on the application of integrals involving cyclic products of kernels.
Valery V. Buldygin; Frederic Utzet; Vladimir Zaiats
Qüestiió (2002)
- Volume: 26, Issue: 1-2, page 3-14
- ISSN: 0210-8054
Access Full Article
topAbstract
topHow to cite
topBuldygin, Valery V., Utzet, Frederic, and Zaiats, Vladimir. "A note on the application of integrals involving cyclic products of kernels.." Qüestiió 26.1-2 (2002): 3-14. <http://eudml.org/doc/40366>.
@article{Buldygin2002,
abstract = {In statistics of stochastic processes and random fields, a moment function or a cumulant of an estimate of either the correlation function or the spectral function can often contain an integral involving a cyclic product of kernels. We define and study this class of integrals and prove a Young-Hölder inequality. This inequality further enables us to study asymptotics of the above mentioned integrals in the situation where the kernels depend on a parameter. An application to the problem of estimation of the response function in a Volterra system is given.},
author = {Buldygin, Valery V., Utzet, Frederic, Zaiats, Vladimir},
journal = {Qüestiió},
keywords = {Procesos estocásticos; Inferencia no paramétrica; Ecuaciones integrales estocásticas; Kernel; Convergencia asintótica; integral involving cyclic products of kernels; cumulants; Young-Hölder inequality; cross-correlogram; asymptotic normality},
language = {eng},
number = {1-2},
pages = {3-14},
title = {A note on the application of integrals involving cyclic products of kernels.},
url = {http://eudml.org/doc/40366},
volume = {26},
year = {2002},
}
TY - JOUR
AU - Buldygin, Valery V.
AU - Utzet, Frederic
AU - Zaiats, Vladimir
TI - A note on the application of integrals involving cyclic products of kernels.
JO - Qüestiió
PY - 2002
VL - 26
IS - 1-2
SP - 3
EP - 14
AB - In statistics of stochastic processes and random fields, a moment function or a cumulant of an estimate of either the correlation function or the spectral function can often contain an integral involving a cyclic product of kernels. We define and study this class of integrals and prove a Young-Hölder inequality. This inequality further enables us to study asymptotics of the above mentioned integrals in the situation where the kernels depend on a parameter. An application to the problem of estimation of the response function in a Volterra system is given.
LA - eng
KW - Procesos estocásticos; Inferencia no paramétrica; Ecuaciones integrales estocásticas; Kernel; Convergencia asintótica; integral involving cyclic products of kernels; cumulants; Young-Hölder inequality; cross-correlogram; asymptotic normality
UR - http://eudml.org/doc/40366
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.