Optimum solutions in multiobjective optimization problems.
Trabajos de Investigación Operativa (1987)
- Volume: 2, Issue: 1, page 49-67
- ISSN: 0213-8204
Access Full Article
topAbstract
topHow to cite
topRíos Insua, David. "Sobre soluciones óptimas en problemas de optimización multiobjetivo.." Trabajos de Investigación Operativa 2.1 (1987): 49-67. <http://eudml.org/doc/40583>.
@article{RíosInsua1987,
abstract = {Estudiamos los principales tipos de conceptos de óptimo considerados en problemas de optimización multiobjetivo, cuando la ordenación de alternativas se regula mediante un cono K convexo: soluciones K-maximales, débilmente K-maximales, fuertemente K-maximales, propiamente K-maximales. Damos caracterizaciones en problemas generales de optimización vectorial y condiciones suficientes en problemas de maximización de funciones de valor vectoriales y escalares, particularizando después al caso de conos poliédricos y al de ortantes no negativos. Se concluye con algunas aplicaciones y cuestiones prácticas.},
author = {Ríos Insua, David},
journal = {Trabajos de Investigación Operativa},
keywords = {Programación multiobjetivo; Optimización; vector optimization; multiobjective optimization; convex cone; strongly -maximal},
language = {spa},
number = {1},
pages = {49-67},
title = {Sobre soluciones óptimas en problemas de optimización multiobjetivo.},
url = {http://eudml.org/doc/40583},
volume = {2},
year = {1987},
}
TY - JOUR
AU - Ríos Insua, David
TI - Sobre soluciones óptimas en problemas de optimización multiobjetivo.
JO - Trabajos de Investigación Operativa
PY - 1987
VL - 2
IS - 1
SP - 49
EP - 67
AB - Estudiamos los principales tipos de conceptos de óptimo considerados en problemas de optimización multiobjetivo, cuando la ordenación de alternativas se regula mediante un cono K convexo: soluciones K-maximales, débilmente K-maximales, fuertemente K-maximales, propiamente K-maximales. Damos caracterizaciones en problemas generales de optimización vectorial y condiciones suficientes en problemas de maximización de funciones de valor vectoriales y escalares, particularizando después al caso de conos poliédricos y al de ortantes no negativos. Se concluye con algunas aplicaciones y cuestiones prácticas.
LA - spa
KW - Programación multiobjetivo; Optimización; vector optimization; multiobjective optimization; convex cone; strongly -maximal
UR - http://eudml.org/doc/40583
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.