The homotopy type of the space of degree 0 immersed plane curves.
Hiroki Kodama; Peter W. Michor
Revista Matemática Complutense (2006)
- Volume: 19, Issue: 1, page 227-234
- ISSN: 1139-1138
Access Full Article
topAbstract
topHow to cite
topKodama, Hiroki, and Michor, Peter W.. "The homotopy type of the space of degree 0 immersed plane curves.." Revista Matemática Complutense 19.1 (2006): 227-234. <http://eudml.org/doc/40886>.
@article{Kodama2006,
abstract = {The space Bi0 = Imm0 (S1, R2) / Diff (S1) of all immersions of rotation degree 0 in the plane modulo reparameterizations has homotopy groups π1(Bi0) = Z, π2(Bi0) = Z, and πk(Bi0) = 0 for k ≥ 3. },
author = {Kodama, Hiroki, Michor, Peter W.},
journal = {Revista Matemática Complutense},
keywords = {Grupos de homotopía; Curvas planas; Inmersiones; homotopy type; immersed plane curves; rotation degree; Fréchet Lie group; orientation; retraction},
language = {eng},
number = {1},
pages = {227-234},
title = {The homotopy type of the space of degree 0 immersed plane curves.},
url = {http://eudml.org/doc/40886},
volume = {19},
year = {2006},
}
TY - JOUR
AU - Kodama, Hiroki
AU - Michor, Peter W.
TI - The homotopy type of the space of degree 0 immersed plane curves.
JO - Revista Matemática Complutense
PY - 2006
VL - 19
IS - 1
SP - 227
EP - 234
AB - The space Bi0 = Imm0 (S1, R2) / Diff (S1) of all immersions of rotation degree 0 in the plane modulo reparameterizations has homotopy groups π1(Bi0) = Z, π2(Bi0) = Z, and πk(Bi0) = 0 for k ≥ 3.
LA - eng
KW - Grupos de homotopía; Curvas planas; Inmersiones; homotopy type; immersed plane curves; rotation degree; Fréchet Lie group; orientation; retraction
UR - http://eudml.org/doc/40886
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.