A Compactness Theorem for Surfaces with Lp-Bounded Second Fundamental Form.
The classical Arzela-Ascoli theorem is a compactness result for families of functions depending on bounds on the derivatives of the functions, and is of invaluable use in many fields of mathematics. In this paper, inspired by a result of Corlette, we prove an analogous compactness result for families of immersed submanifolds which depends only on bounds on the derivatives of the second fundamental forms of these submanifolds. We then show how the result of Corlette may be obtained as an immediate...
The homotopy fiber of the inclusion from the long embedding space to the long immersion space is known to be an iterated based loop space (if the codimension is greater than two). In this paper we deloop the homotopy fiber to obtain the topological Stiefel manifold, combining results of Lashof and of Lees. We also give a delooping of the long embedding space, which can be regarded as a version of Morlet-Burghelea-Lashof's delooping of the diffeomorphism group of the disk relative to the boundary....