Existence and stability of periodic solutions for a nonlocal evolution population problem.
RACSAM (2005)
- Volume: 99, Issue: 2, page 227-234
- ISSN: 1578-7303
Access Full Article
topAbstract
topHow to cite
topBadii, Maurizio. "Existence and stability of periodic solutions for a nonlocal evolution population problem.." RACSAM 99.2 (2005): 227-234. <http://eudml.org/doc/41014>.
@article{Badii2005,
abstract = {The theory of maximal monotone operators is applied to prove the existence of weak periodic solutions for a nonlinear nonlocal problem. The stability of these solutions is a consequence of the Lipschitz continuous assumption on the diffusivity matrix and the death rate.},
author = {Badii, Maurizio},
journal = {RACSAM},
keywords = {Ecuaciones parabólicas; Ecuaciones de evolución no lineales; Solución débil; Funciones periódicas; Teorema de existencia; Estabilidad; Operadores monótonos; bacteria diffusion process; Fourier law; maximal monotone operators},
language = {eng},
number = {2},
pages = {227-234},
title = {Existence and stability of periodic solutions for a nonlocal evolution population problem.},
url = {http://eudml.org/doc/41014},
volume = {99},
year = {2005},
}
TY - JOUR
AU - Badii, Maurizio
TI - Existence and stability of periodic solutions for a nonlocal evolution population problem.
JO - RACSAM
PY - 2005
VL - 99
IS - 2
SP - 227
EP - 234
AB - The theory of maximal monotone operators is applied to prove the existence of weak periodic solutions for a nonlinear nonlocal problem. The stability of these solutions is a consequence of the Lipschitz continuous assumption on the diffusivity matrix and the death rate.
LA - eng
KW - Ecuaciones parabólicas; Ecuaciones de evolución no lineales; Solución débil; Funciones periódicas; Teorema de existencia; Estabilidad; Operadores monótonos; bacteria diffusion process; Fourier law; maximal monotone operators
UR - http://eudml.org/doc/41014
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.