# Multiparameter pointwise ergodic theorems for Markov operators on L∞.

Publicacions Matemàtiques (1994)

- Volume: 38, Issue: 2, page 395-410
- ISSN: 0214-1493

## Access Full Article

top## Abstract

top## How to cite

topSato, Ryotaro. "Multiparameter pointwise ergodic theorems for Markov operators on L∞.." Publicacions Matemàtiques 38.2 (1994): 395-410. <http://eudml.org/doc/41181>.

@article{Sato1994,

abstract = {Let P1, ..., Pd be commuting Markov operators on L∞(X,F,μ), where (X,F,μ) is a probability measure space. Assuming that each Pi is either conservative or invertible, we prove that for every f in Lp(X,F,μ) with 1 ≤ p < ∞ the averagesAnf = (n + 1)-d Σ0≤ni≤n P1n1 P2n2 ... Pdnd f (n ≥ 0)converge almost everywhere if and only if there exists an invariant and equivalent finite measure λ for which the Radon-Nikodym derivative v = dλ/dμ is in the dual space Lp'(X,F,μ). Next we study the case in which exists p1, with 1 ≤ p1 ≤ ∞, such that for every f in Lp(X,F,μ) the limit function belongs to Lp1(X,F,μ). We give necessary and sufficient conditions for this problem.},

author = {Sato, Ryotaro},

journal = {Publicacions Matemàtiques},

keywords = {Teoría ergódica; Espacio de medida; Teorema de Radon-Nikodym; ergodic theorems; commuting Markov operators; Radon-Nikodym derivative},

language = {eng},

number = {2},

pages = {395-410},

title = {Multiparameter pointwise ergodic theorems for Markov operators on L∞.},

url = {http://eudml.org/doc/41181},

volume = {38},

year = {1994},

}

TY - JOUR

AU - Sato, Ryotaro

TI - Multiparameter pointwise ergodic theorems for Markov operators on L∞.

JO - Publicacions Matemàtiques

PY - 1994

VL - 38

IS - 2

SP - 395

EP - 410

AB - Let P1, ..., Pd be commuting Markov operators on L∞(X,F,μ), where (X,F,μ) is a probability measure space. Assuming that each Pi is either conservative or invertible, we prove that for every f in Lp(X,F,μ) with 1 ≤ p < ∞ the averagesAnf = (n + 1)-d Σ0≤ni≤n P1n1 P2n2 ... Pdnd f (n ≥ 0)converge almost everywhere if and only if there exists an invariant and equivalent finite measure λ for which the Radon-Nikodym derivative v = dλ/dμ is in the dual space Lp'(X,F,μ). Next we study the case in which exists p1, with 1 ≤ p1 ≤ ∞, such that for every f in Lp(X,F,μ) the limit function belongs to Lp1(X,F,μ). We give necessary and sufficient conditions for this problem.

LA - eng

KW - Teoría ergódica; Espacio de medida; Teorema de Radon-Nikodym; ergodic theorems; commuting Markov operators; Radon-Nikodym derivative

UR - http://eudml.org/doc/41181

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.