top
We prove a new adjunction theorem for n-equivalences. This theorem enables us to produce a simple geometric version of proof of the triad connectivity theorem of Blakers and Massey. An important intermediate step is a study of the collapsing map S∨X → S, S being a sphere.
Witbooi, Peter J.. "Adjunction of n-equivalences and triad connectivity.." Publicacions Matemàtiques 39.2 (1995): 367-377. <http://eudml.org/doc/41229>.
@article{Witbooi1995, abstract = {We prove a new adjunction theorem for n-equivalences. This theorem enables us to produce a simple geometric version of proof of the triad connectivity theorem of Blakers and Massey. An important intermediate step is a study of the collapsing map S∨X → S, S being a sphere.}, author = {Witbooi, Peter J.}, journal = {Publicacions Matemàtiques}, keywords = {Grupos de homotopía; Fibración; Topología algebraica; -equivalence; triad; quasifibration}, language = {eng}, number = {2}, pages = {367-377}, title = {Adjunction of n-equivalences and triad connectivity.}, url = {http://eudml.org/doc/41229}, volume = {39}, year = {1995}, }
TY - JOUR AU - Witbooi, Peter J. TI - Adjunction of n-equivalences and triad connectivity. JO - Publicacions Matemàtiques PY - 1995 VL - 39 IS - 2 SP - 367 EP - 377 AB - We prove a new adjunction theorem for n-equivalences. This theorem enables us to produce a simple geometric version of proof of the triad connectivity theorem of Blakers and Massey. An important intermediate step is a study of the collapsing map S∨X → S, S being a sphere. LA - eng KW - Grupos de homotopía; Fibración; Topología algebraica; -equivalence; triad; quasifibration UR - http://eudml.org/doc/41229 ER -