Adjunction of n-equivalences and triad connectivity.

Peter J. Witbooi

Publicacions Matemàtiques (1995)

  • Volume: 39, Issue: 2, page 367-377
  • ISSN: 0214-1493

Abstract

top
We prove a new adjunction theorem for n-equivalences. This theorem enables us to produce a simple geometric version of proof of the triad connectivity theorem of Blakers and Massey. An important intermediate step is a study of the collapsing map S∨X → S, S being a sphere.

How to cite

top

Witbooi, Peter J.. "Adjunction of n-equivalences and triad connectivity.." Publicacions Matemàtiques 39.2 (1995): 367-377. <http://eudml.org/doc/41229>.

@article{Witbooi1995,
abstract = {We prove a new adjunction theorem for n-equivalences. This theorem enables us to produce a simple geometric version of proof of the triad connectivity theorem of Blakers and Massey. An important intermediate step is a study of the collapsing map S∨X → S, S being a sphere.},
author = {Witbooi, Peter J.},
journal = {Publicacions Matemàtiques},
keywords = {Grupos de homotopía; Fibración; Topología algebraica; -equivalence; triad; quasifibration},
language = {eng},
number = {2},
pages = {367-377},
title = {Adjunction of n-equivalences and triad connectivity.},
url = {http://eudml.org/doc/41229},
volume = {39},
year = {1995},
}

TY - JOUR
AU - Witbooi, Peter J.
TI - Adjunction of n-equivalences and triad connectivity.
JO - Publicacions Matemàtiques
PY - 1995
VL - 39
IS - 2
SP - 367
EP - 377
AB - We prove a new adjunction theorem for n-equivalences. This theorem enables us to produce a simple geometric version of proof of the triad connectivity theorem of Blakers and Massey. An important intermediate step is a study of the collapsing map S∨X → S, S being a sphere.
LA - eng
KW - Grupos de homotopía; Fibración; Topología algebraica; -equivalence; triad; quasifibration
UR - http://eudml.org/doc/41229
ER -

NotesEmbed ?

top

You must be logged in to post comments.