Basic algebro-geometric conceps in the study of planar polynomial vector fields.
Publicacions Matemàtiques (1997)
- Volume: 41, Issue: 1, page 269-295
- ISSN: 0214-1493
Access Full Article
topAbstract
topHow to cite
topSchlomiuk, Dana. "Basic algebro-geometric conceps in the study of planar polynomial vector fields.." Publicacions Matemàtiques 41.1 (1997): 269-295. <http://eudml.org/doc/41293>.
@article{Schlomiuk1997,
abstract = {In this work we show that basic algebro-geometric concepts such as the concept of intersection multiplicity of projective curves at a point in the complex projective plane, are needed in the study of planar polynomial vector fields and in particular in summing up the information supplied by bifurcation diagrams of global families of polynomial systems. Algebro-geometric concepts are helpful in organizing and unifying in more intrinsic ways this information.},
author = {Schlomiuk, Dana},
journal = {Publicacions Matemàtiques},
keywords = {Formas cuadráticas; Campos vectoriales; Sistemas diferenciales; Ecuaciones polinómicas; Teoría de bifurcación; limit cycles; algebraic invariant curves; bifurcations},
language = {eng},
number = {1},
pages = {269-295},
title = {Basic algebro-geometric conceps in the study of planar polynomial vector fields.},
url = {http://eudml.org/doc/41293},
volume = {41},
year = {1997},
}
TY - JOUR
AU - Schlomiuk, Dana
TI - Basic algebro-geometric conceps in the study of planar polynomial vector fields.
JO - Publicacions Matemàtiques
PY - 1997
VL - 41
IS - 1
SP - 269
EP - 295
AB - In this work we show that basic algebro-geometric concepts such as the concept of intersection multiplicity of projective curves at a point in the complex projective plane, are needed in the study of planar polynomial vector fields and in particular in summing up the information supplied by bifurcation diagrams of global families of polynomial systems. Algebro-geometric concepts are helpful in organizing and unifying in more intrinsic ways this information.
LA - eng
KW - Formas cuadráticas; Campos vectoriales; Sistemas diferenciales; Ecuaciones polinómicas; Teoría de bifurcación; limit cycles; algebraic invariant curves; bifurcations
UR - http://eudml.org/doc/41293
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.