Existence and uniqueness of periodic solutions for a nonlinear reaction-diffusion problem.

Maurizio Badii

Publicacions Matemàtiques (2000)

  • Volume: 44, Issue: 1, page 295-307
  • ISSN: 0214-1493

Abstract

top
We consider a class of degenerate reaction-diffusion equations on a bounded domain with nonlinear flux on the boundary. These problems arise in the mathematical modelling of flow through porous media. We prove, under appropriate hypothesis, the existence and uniqueness of the nonnegative weak periodic solution. To establish our result, we use the Schauder fixed point theorem and some regularizing arguments.

How to cite

top

Badii, Maurizio. "Existence and uniqueness of periodic solutions for a nonlinear reaction-diffusion problem.." Publicacions Matemàtiques 44.1 (2000): 295-307. <http://eudml.org/doc/41394>.

@article{Badii2000,
abstract = {We consider a class of degenerate reaction-diffusion equations on a bounded domain with nonlinear flux on the boundary. These problems arise in the mathematical modelling of flow through porous media. We prove, under appropriate hypothesis, the existence and uniqueness of the nonnegative weak periodic solution. To establish our result, we use the Schauder fixed point theorem and some regularizing arguments.},
author = {Badii, Maurizio},
journal = {Publicacions Matemàtiques},
keywords = {Ecuaciones parabólicas; Ecuaciones no lineales; Flujo no lineal; Difusión no lineal; Medios porosos; degenerate reaction-diffusion equation; nonlinear boundary conditions; nonnegative weak periodic solution; Schauder fixed point theorem},
language = {eng},
number = {1},
pages = {295-307},
title = {Existence and uniqueness of periodic solutions for a nonlinear reaction-diffusion problem.},
url = {http://eudml.org/doc/41394},
volume = {44},
year = {2000},
}

TY - JOUR
AU - Badii, Maurizio
TI - Existence and uniqueness of periodic solutions for a nonlinear reaction-diffusion problem.
JO - Publicacions Matemàtiques
PY - 2000
VL - 44
IS - 1
SP - 295
EP - 307
AB - We consider a class of degenerate reaction-diffusion equations on a bounded domain with nonlinear flux on the boundary. These problems arise in the mathematical modelling of flow through porous media. We prove, under appropriate hypothesis, the existence and uniqueness of the nonnegative weak periodic solution. To establish our result, we use the Schauder fixed point theorem and some regularizing arguments.
LA - eng
KW - Ecuaciones parabólicas; Ecuaciones no lineales; Flujo no lineal; Difusión no lineal; Medios porosos; degenerate reaction-diffusion equation; nonlinear boundary conditions; nonnegative weak periodic solution; Schauder fixed point theorem
UR - http://eudml.org/doc/41394
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.