top
We study the existence of global canard surfaces for a wide class of real singular perturbation problems. These surfaces define families of solutions which remain near the slow curve as the singular parameter goes to zero.
Panazzolo, Daniel. "On the existence of canard solutions." Publicacions Matemàtiques 44.2 (2000): 503-592. <http://eudml.org/doc/41408>.
@article{Panazzolo2000, abstract = {We study the existence of global canard surfaces for a wide class of real singular perturbation problems. These surfaces define families of solutions which remain near the slow curve as the singular parameter goes to zero.}, author = {Panazzolo, Daniel}, journal = {Publicacions Matemàtiques}, keywords = {Ecuaciones diferenciales ordinarias; Perturbación singular; desingularization; local canard problem}, language = {eng}, number = {2}, pages = {503-592}, title = {On the existence of canard solutions}, url = {http://eudml.org/doc/41408}, volume = {44}, year = {2000}, }
TY - JOUR AU - Panazzolo, Daniel TI - On the existence of canard solutions JO - Publicacions Matemàtiques PY - 2000 VL - 44 IS - 2 SP - 503 EP - 592 AB - We study the existence of global canard surfaces for a wide class of real singular perturbation problems. These surfaces define families of solutions which remain near the slow curve as the singular parameter goes to zero. LA - eng KW - Ecuaciones diferenciales ordinarias; Perturbación singular; desingularization; local canard problem UR - http://eudml.org/doc/41408 ER -