# When is each proper overring of R an S(Eidenberg)-domain?

Publicacions Matemàtiques (2002)

- Volume: 46, Issue: 2, page 435-440
- ISSN: 0214-1493

## Access Full Article

top## Abstract

top## How to cite

topJarboui, Noômen. "When is each proper overring of R an S(Eidenberg)-domain?." Publicacions Matemàtiques 46.2 (2002): 435-440. <http://eudml.org/doc/41456>.

@article{Jarboui2002,

abstract = {A domain R is called a maximal "non-S" subring of a field L if R ⊂ L, R is not an S-domain and each domain T such that R ⊂ T ⊆ L is an S-domain. We show that maximal "non-S" subrings R of a field L are the integrally closed pseudo-valuation domains satisfying dim(R) = 1, dimv(R) = 2 and L = qf(R).},

author = {Jarboui, Noômen},

journal = {Publicacions Matemàtiques},

keywords = {Anillos conmutativos; Extensión; Dimensión de Krull; -domain; pseudo-valuation domains; Seidenberg domain},

language = {eng},

number = {2},

pages = {435-440},

title = {When is each proper overring of R an S(Eidenberg)-domain?},

url = {http://eudml.org/doc/41456},

volume = {46},

year = {2002},

}

TY - JOUR

AU - Jarboui, Noômen

TI - When is each proper overring of R an S(Eidenberg)-domain?

JO - Publicacions Matemàtiques

PY - 2002

VL - 46

IS - 2

SP - 435

EP - 440

AB - A domain R is called a maximal "non-S" subring of a field L if R ⊂ L, R is not an S-domain and each domain T such that R ⊂ T ⊆ L is an S-domain. We show that maximal "non-S" subrings R of a field L are the integrally closed pseudo-valuation domains satisfying dim(R) = 1, dimv(R) = 2 and L = qf(R).

LA - eng

KW - Anillos conmutativos; Extensión; Dimensión de Krull; -domain; pseudo-valuation domains; Seidenberg domain

UR - http://eudml.org/doc/41456

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.