When is each proper overring of R an S(Eidenberg)-domain?
Publicacions Matemàtiques (2002)
- Volume: 46, Issue: 2, page 435-440
- ISSN: 0214-1493
Access Full Article
topAbstract
topHow to cite
topJarboui, Noômen. "When is each proper overring of R an S(Eidenberg)-domain?." Publicacions Matemàtiques 46.2 (2002): 435-440. <http://eudml.org/doc/41456>.
@article{Jarboui2002,
abstract = {A domain R is called a maximal "non-S" subring of a field L if R ⊂ L, R is not an S-domain and each domain T such that R ⊂ T ⊆ L is an S-domain. We show that maximal "non-S" subrings R of a field L are the integrally closed pseudo-valuation domains satisfying dim(R) = 1, dimv(R) = 2 and L = qf(R).},
author = {Jarboui, Noômen},
journal = {Publicacions Matemàtiques},
keywords = {Anillos conmutativos; Extensión; Dimensión de Krull; -domain; pseudo-valuation domains; Seidenberg domain},
language = {eng},
number = {2},
pages = {435-440},
title = {When is each proper overring of R an S(Eidenberg)-domain?},
url = {http://eudml.org/doc/41456},
volume = {46},
year = {2002},
}
TY - JOUR
AU - Jarboui, Noômen
TI - When is each proper overring of R an S(Eidenberg)-domain?
JO - Publicacions Matemàtiques
PY - 2002
VL - 46
IS - 2
SP - 435
EP - 440
AB - A domain R is called a maximal "non-S" subring of a field L if R ⊂ L, R is not an S-domain and each domain T such that R ⊂ T ⊆ L is an S-domain. We show that maximal "non-S" subrings R of a field L are the integrally closed pseudo-valuation domains satisfying dim(R) = 1, dimv(R) = 2 and L = qf(R).
LA - eng
KW - Anillos conmutativos; Extensión; Dimensión de Krull; -domain; pseudo-valuation domains; Seidenberg domain
UR - http://eudml.org/doc/41456
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.