The impact of the Radon-Nikodym property on the weak bounded approximation property.

Eve Oja

RACSAM (2006)

  • Volume: 100, Issue: 1-2, page 325-331
  • ISSN: 1578-7303

Abstract

top
A Banach space X is said to have the weak λ-bounded approximation property if for every separable reflexive Banach space Y and for every compact operator T : X → Y, there exists a net (Sα) of finite-rank operators on X such that supα ||TSα|| ≤ λ||T|| and Sα → IX uniformly on compact subsets of X.We prove the following theorem. Let X** or Y* have the Radon-Nikodym property; if X has the weak λ-bounded approximation property, then for every bounded linear operator T: X → Y, there exists a net (Sα) as in the above definition. It follows that the weak λ-bounded and λ-bounded approximation properties are equivalent for X whenever X* or X** has the Radon-Nikodym property. Relying on Johnson?s theorem on lifting of the metric approximation property from Banach spaces to their dual spaces, this yields a new proof of the classical result: if X* has the approximation property and X* or X** has the Radon-Nikodym property, then X* has the metric approximation property.

How to cite

top

Oja, Eve. "The impact of the Radon-Nikodym property on the weak bounded approximation property.." RACSAM 100.1-2 (2006): 325-331. <http://eudml.org/doc/41657>.

@article{Oja2006,
abstract = {A Banach space X is said to have the weak λ-bounded approximation property if for every separable reflexive Banach space Y and for every compact operator T : X → Y, there exists a net (Sα) of finite-rank operators on X such that supα ||TSα|| ≤ λ||T|| and Sα → IX uniformly on compact subsets of X.We prove the following theorem. Let X** or Y* have the Radon-Nikodym property; if X has the weak λ-bounded approximation property, then for every bounded linear operator T: X → Y, there exists a net (Sα) as in the above definition. It follows that the weak λ-bounded and λ-bounded approximation properties are equivalent for X whenever X* or X** has the Radon-Nikodym property. Relying on Johnson?s theorem on lifting of the metric approximation property from Banach spaces to their dual spaces, this yields a new proof of the classical result: if X* has the approximation property and X* or X** has the Radon-Nikodym property, then X* has the metric approximation property.},
author = {Oja, Eve},
journal = {RACSAM},
keywords = {bounded approximation property; bounded approximation property with conjugate operators},
language = {eng},
number = {1-2},
pages = {325-331},
title = {The impact of the Radon-Nikodym property on the weak bounded approximation property.},
url = {http://eudml.org/doc/41657},
volume = {100},
year = {2006},
}

TY - JOUR
AU - Oja, Eve
TI - The impact of the Radon-Nikodym property on the weak bounded approximation property.
JO - RACSAM
PY - 2006
VL - 100
IS - 1-2
SP - 325
EP - 331
AB - A Banach space X is said to have the weak λ-bounded approximation property if for every separable reflexive Banach space Y and for every compact operator T : X → Y, there exists a net (Sα) of finite-rank operators on X such that supα ||TSα|| ≤ λ||T|| and Sα → IX uniformly on compact subsets of X.We prove the following theorem. Let X** or Y* have the Radon-Nikodym property; if X has the weak λ-bounded approximation property, then for every bounded linear operator T: X → Y, there exists a net (Sα) as in the above definition. It follows that the weak λ-bounded and λ-bounded approximation properties are equivalent for X whenever X* or X** has the Radon-Nikodym property. Relying on Johnson?s theorem on lifting of the metric approximation property from Banach spaces to their dual spaces, this yields a new proof of the classical result: if X* has the approximation property and X* or X** has the Radon-Nikodym property, then X* has the metric approximation property.
LA - eng
KW - bounded approximation property; bounded approximation property with conjugate operators
UR - http://eudml.org/doc/41657
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.