Unconditional ideals of finite rank operators

Trond A. Abrahamsen; Asvald Lima; Vegard Lima

Czechoslovak Mathematical Journal (2008)

  • Volume: 58, Issue: 4, page 1257-1278
  • ISSN: 0011-4642

Abstract

top
Let X be a Banach space. We give characterizations of when ( Y , X ) is a u -ideal in 𝒲 ( Y , X ) for every Banach space Y in terms of nets of finite rank operators approximating weakly compact operators. Similar characterizations are given for the cases when ( X , Y ) is a u -ideal in 𝒲 ( X , Y ) for every Banach space Y , when ( Y , X ) is a u -ideal in 𝒲 ( Y , X * * ) for every Banach space Y , and when ( Y , X ) is a u -ideal in 𝒦 ( Y , X * * ) for every Banach space Y .

How to cite

top

Abrahamsen, Trond A., Lima, Asvald, and Lima, Vegard. "Unconditional ideals of finite rank operators." Czechoslovak Mathematical Journal 58.4 (2008): 1257-1278. <http://eudml.org/doc/37902>.

@article{Abrahamsen2008,
abstract = {Let $X$ be a Banach space. We give characterizations of when $\{\mathcal \{F\}\}(Y,X)$ is a $u$-ideal in $\{\mathcal \{W\}\}(Y,X)$ for every Banach space $Y$ in terms of nets of finite rank operators approximating weakly compact operators. Similar characterizations are given for the cases when $\{\mathcal \{F\}\}(X,Y)$ is a $u$-ideal in $\{\mathcal \{W\}\}(X,Y)$ for every Banach space $Y$, when $\{\mathcal \{F\}\}(Y,X)$ is a $u$-ideal in $\{\mathcal \{W\}\}(Y,X^\{**\})$ for every Banach space $Y$, and when $\{\mathcal \{F\}\}(Y,X)$ is a $u$-ideal in $\{\mathcal \{K\}\}(Y,X^\{**\})$ for every Banach space $Y$.},
author = {Abrahamsen, Trond A., Lima, Asvald, Lima, Vegard},
journal = {Czechoslovak Mathematical Journal},
keywords = {$u$-ideals; finite rank; compact; and weakly compact operators; Hahn-Banach extension operators; -ideal; finite rank operator; Hahn-Banach extension operator},
language = {eng},
number = {4},
pages = {1257-1278},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Unconditional ideals of finite rank operators},
url = {http://eudml.org/doc/37902},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Abrahamsen, Trond A.
AU - Lima, Asvald
AU - Lima, Vegard
TI - Unconditional ideals of finite rank operators
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 1257
EP - 1278
AB - Let $X$ be a Banach space. We give characterizations of when ${\mathcal {F}}(Y,X)$ is a $u$-ideal in ${\mathcal {W}}(Y,X)$ for every Banach space $Y$ in terms of nets of finite rank operators approximating weakly compact operators. Similar characterizations are given for the cases when ${\mathcal {F}}(X,Y)$ is a $u$-ideal in ${\mathcal {W}}(X,Y)$ for every Banach space $Y$, when ${\mathcal {F}}(Y,X)$ is a $u$-ideal in ${\mathcal {W}}(Y,X^{**})$ for every Banach space $Y$, and when ${\mathcal {F}}(Y,X)$ is a $u$-ideal in ${\mathcal {K}}(Y,X^{**})$ for every Banach space $Y$.
LA - eng
KW - $u$-ideals; finite rank; compact; and weakly compact operators; Hahn-Banach extension operators; -ideal; finite rank operator; Hahn-Banach extension operator
UR - http://eudml.org/doc/37902
ER -

References

top
  1. Belobrov, P. K., Minimal extension of linear functionals onto the second conjugate space, Mat. Zametki 27 (1980), 439-445, 494. (1980) MR0570754
  2. Casazza, P. G., Kalton, N. J., Notes on approximation properties in separable {Banach} spaces, Geometry of Banach Spaces, Proc. Conf. Strobl 1989, London Mathematical Society Lecture Note Series 158 (P.F.X. Müller and W. Schachermayer, eds.), Cambridge University Press (1990), 49-63. (1990) MR1110185
  3. Davis, W. J., Figiel, T., Johnson, W. B., Pełczyński, A., 10.1016/0022-1236(74)90044-5, J. Functional Analysis 17 (1974), 311-327. (1974) MR0355536DOI10.1016/0022-1236(74)90044-5
  4. Feder, M., Saphar, P., 10.1007/BF02757132, Israel J. Math. 21 (1975), 38-49. (1975) Zbl0325.47028MR0377591DOI10.1007/BF02757132
  5. Godefroy, G., Kalton, N. J., Saphar, P. D., Unconditional ideals in {Banach} spaces, Studia Math. 104 (1993), 13-59. (1993) Zbl0814.46012MR1208038
  6. Godefroy, G., Saphar, P., 10.1215/ijm/1255988868, Illinois J. Math. 32 (1988), 672-695. (1988) Zbl0631.46015MR0955384DOI10.1215/ijm/1255988868
  7. Harmand, P., Werner, D., Werner, W., 10.1007/BFb0084360, Lecture Notes in Mathematics, vol. 1547, Springer-Verlag, Berlin (1993). (1993) Zbl0789.46011MR1238713DOI10.1007/BFb0084360
  8. Johnson, J., Wolfe, J., 10.1090/S0002-9939-1979-0529211-0, Proc. Amer. Math. Soc. 75 (1979), 50-52. (1979) Zbl0405.46010MR0529211DOI10.1090/S0002-9939-1979-0529211-0
  9. Kalton, N. J., 10.1002/mana.19841150107, Math. Nachr. 115 (1984), 71-97. (1984) MR0755269DOI10.1002/mana.19841150107
  10. Lima, V., 10.1016/j.jmaa.2007.01.007, J. Math. Anal. A. 334 (2007), 593-603. (2007) Zbl1120.46011MR2332578DOI10.1016/j.jmaa.2007.01.007
  11. Lima, V., Lima, A., 10.1007/s11512-007-0060-y, Arkiv für Matematik 46 (2008), 113-142. (2008) Zbl1166.46009MR2379687DOI10.1007/s11512-007-0060-y
  12. Lima, V., Lima, A., 10.1016/j.jfa.2003.10.001, J. Funct. Anal. 210 (2004), 148-170. (2004) Zbl1068.46014MR2052117DOI10.1016/j.jfa.2003.10.001
  13. Lima, A., 10.1090/S0002-9947-1977-0430747-4, Trans. Amer. Math. Soc. 227 (1977), 1-62. (1977) Zbl0347.46017MR0430747DOI10.1090/S0002-9947-1977-0430747-4
  14. Lima, A., 10.1007/BF02760953, Israel J. Math. 84 (1993), 451-475. (1993) Zbl0814.46016MR1244680DOI10.1007/BF02760953
  15. Lima, A., 10.4064/sm-113-3-249-263, Studia Math. 113 (1995), 249-263. (1995) Zbl0826.46013MR1330210DOI10.4064/sm-113-3-249-263
  16. Lima, A., Nygaard, O., Oja, E., 10.1007/BF02810673, Israel J. Math. 119 (2000), 325-348. (2000) Zbl0983.46024MR1802659DOI10.1007/BF02810673
  17. Lima, A., Oja, E., Ideals of finite rank operators, intersection properties of balls, and the approximation property, Studia Math. 133 (1999), 175-186. (1999) Zbl0930.46020MR1686696
  18. Lima, A., Oja, E., 10.1090/S0002-9939-02-06615-7, Proc. Amer. Math. Soc. 130 (2002), 3631-3640 (electronic). (2002) Zbl1006.46004MR1920043DOI10.1090/S0002-9939-02-06615-7
  19. Lima, A., Oja, E., 10.1017/S144678870001017X, J. Aust. Math. Soc. 77 (2004), 91-110. (2004) Zbl1082.46016MR2069027DOI10.1017/S144678870001017X
  20. Lima, A., Oja, E., 10.1307/mmj/1091112074, Michigan Math. J. 52 (2004), 253-265. (2004) Zbl1069.46013MR2069799DOI10.1307/mmj/1091112074
  21. Lima, A., Oja, E., 10.1007/s00208-005-0656-0, Math. Ann. 333 (2005), 471-484. (2005) Zbl1097.46012MR2198796DOI10.1007/s00208-005-0656-0
  22. Lima, A., Oja, E., Rao, T. S. S. R. K., Werner, D., 10.1307/mmj/1029005074, Michigan Math. J. 41 (1994), 473-490. (1994) Zbl0823.46023MR1297703DOI10.1307/mmj/1029005074
  23. Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces I, Springer, Berlin-Heidelberg-New York (1977). (1977) Zbl0362.46013MR0500056
  24. Oja, E., Uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem, Eesti NSV Tead. Akad. Toimetised Füüs.-Mat. 33 (1984), 424-438, 473 Russian. (1984) MR0775767
  25. Oja, E., Strong uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem, Mat. Zametki 43 (1988), 237-246, 302 Russian; English translation in Math. Notes 43 (1988), 134-139. (1988) MR0939524
  26. Oja, E., Dual de l'espace des opérateurs linéaires continus, C. R. Acad. Sc. Paris, Sér. A 309 (1989), 983-986. (1989) Zbl0684.47025MR1054748
  27. Oja, E., Extension of functionals and the structure of the space of continuous linear operators, Tartu. Gos. Univ., Tartu (1991), Russian. (1991) Zbl0783.46016MR1114543
  28. Oja, E., 10.1112/S002557930001202X, Mathematika 44 (1997), 120-132. (1997) Zbl0878.46013MR1464382DOI10.1112/S002557930001202X
  29. Oja, E., 10.1090/S0002-9947-00-02521-6, Trans. Amer. Math. Soc. 352 (2000), 2801-2823. (2000) Zbl0954.46010MR1675226DOI10.1090/S0002-9947-00-02521-6
  30. Oja, E., 10.1017/S0013091502001165, Proc. Edinb. Math. Soc. 47 (2004), 679-694. (2004) Zbl1078.46012MR2097268DOI10.1017/S0013091502001165
  31. Oja, E., The impact of the Radon-Nikodým property on the weak bounded approximation property, Rev. R. Acad. Cien. Serie A. Mat. 100 (2006), 325-331. (2006) Zbl1112.46017MR2267414

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.