Unconditional ideals of finite rank operators
Trond A. Abrahamsen; Asvald Lima; Vegard Lima
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 4, page 1257-1278
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAbrahamsen, Trond A., Lima, Asvald, and Lima, Vegard. "Unconditional ideals of finite rank operators." Czechoslovak Mathematical Journal 58.4 (2008): 1257-1278. <http://eudml.org/doc/37902>.
@article{Abrahamsen2008,
abstract = {Let $X$ be a Banach space. We give characterizations of when $\{\mathcal \{F\}\}(Y,X)$ is a $u$-ideal in $\{\mathcal \{W\}\}(Y,X)$ for every Banach space $Y$ in terms of nets of finite rank operators approximating weakly compact operators. Similar characterizations are given for the cases when $\{\mathcal \{F\}\}(X,Y)$ is a $u$-ideal in $\{\mathcal \{W\}\}(X,Y)$ for every Banach space $Y$, when $\{\mathcal \{F\}\}(Y,X)$ is a $u$-ideal in $\{\mathcal \{W\}\}(Y,X^\{**\})$ for every Banach space $Y$, and when $\{\mathcal \{F\}\}(Y,X)$ is a $u$-ideal in $\{\mathcal \{K\}\}(Y,X^\{**\})$ for every Banach space $Y$.},
author = {Abrahamsen, Trond A., Lima, Asvald, Lima, Vegard},
journal = {Czechoslovak Mathematical Journal},
keywords = {$u$-ideals; finite rank; compact; and weakly compact operators; Hahn-Banach extension operators; -ideal; finite rank operator; Hahn-Banach extension operator},
language = {eng},
number = {4},
pages = {1257-1278},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Unconditional ideals of finite rank operators},
url = {http://eudml.org/doc/37902},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Abrahamsen, Trond A.
AU - Lima, Asvald
AU - Lima, Vegard
TI - Unconditional ideals of finite rank operators
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 1257
EP - 1278
AB - Let $X$ be a Banach space. We give characterizations of when ${\mathcal {F}}(Y,X)$ is a $u$-ideal in ${\mathcal {W}}(Y,X)$ for every Banach space $Y$ in terms of nets of finite rank operators approximating weakly compact operators. Similar characterizations are given for the cases when ${\mathcal {F}}(X,Y)$ is a $u$-ideal in ${\mathcal {W}}(X,Y)$ for every Banach space $Y$, when ${\mathcal {F}}(Y,X)$ is a $u$-ideal in ${\mathcal {W}}(Y,X^{**})$ for every Banach space $Y$, and when ${\mathcal {F}}(Y,X)$ is a $u$-ideal in ${\mathcal {K}}(Y,X^{**})$ for every Banach space $Y$.
LA - eng
KW - $u$-ideals; finite rank; compact; and weakly compact operators; Hahn-Banach extension operators; -ideal; finite rank operator; Hahn-Banach extension operator
UR - http://eudml.org/doc/37902
ER -
References
top- Belobrov, P. K., Minimal extension of linear functionals onto the second conjugate space, Mat. Zametki 27 (1980), 439-445, 494. (1980) MR0570754
- Casazza, P. G., Kalton, N. J., Notes on approximation properties in separable {Banach} spaces, Geometry of Banach Spaces, Proc. Conf. Strobl 1989, London Mathematical Society Lecture Note Series 158 (P.F.X. Müller and W. Schachermayer, eds.), Cambridge University Press (1990), 49-63. (1990) MR1110185
- Davis, W. J., Figiel, T., Johnson, W. B., Pełczyński, A., 10.1016/0022-1236(74)90044-5, J. Functional Analysis 17 (1974), 311-327. (1974) MR0355536DOI10.1016/0022-1236(74)90044-5
- Feder, M., Saphar, P., 10.1007/BF02757132, Israel J. Math. 21 (1975), 38-49. (1975) Zbl0325.47028MR0377591DOI10.1007/BF02757132
- Godefroy, G., Kalton, N. J., Saphar, P. D., Unconditional ideals in {Banach} spaces, Studia Math. 104 (1993), 13-59. (1993) Zbl0814.46012MR1208038
- Godefroy, G., Saphar, P., 10.1215/ijm/1255988868, Illinois J. Math. 32 (1988), 672-695. (1988) Zbl0631.46015MR0955384DOI10.1215/ijm/1255988868
- Harmand, P., Werner, D., Werner, W., 10.1007/BFb0084360, Lecture Notes in Mathematics, vol. 1547, Springer-Verlag, Berlin (1993). (1993) Zbl0789.46011MR1238713DOI10.1007/BFb0084360
- Johnson, J., Wolfe, J., 10.1090/S0002-9939-1979-0529211-0, Proc. Amer. Math. Soc. 75 (1979), 50-52. (1979) Zbl0405.46010MR0529211DOI10.1090/S0002-9939-1979-0529211-0
- Kalton, N. J., 10.1002/mana.19841150107, Math. Nachr. 115 (1984), 71-97. (1984) MR0755269DOI10.1002/mana.19841150107
- Lima, V., 10.1016/j.jmaa.2007.01.007, J. Math. Anal. A. 334 (2007), 593-603. (2007) Zbl1120.46011MR2332578DOI10.1016/j.jmaa.2007.01.007
- Lima, V., Lima, A., 10.1007/s11512-007-0060-y, Arkiv für Matematik 46 (2008), 113-142. (2008) Zbl1166.46009MR2379687DOI10.1007/s11512-007-0060-y
- Lima, V., Lima, A., 10.1016/j.jfa.2003.10.001, J. Funct. Anal. 210 (2004), 148-170. (2004) Zbl1068.46014MR2052117DOI10.1016/j.jfa.2003.10.001
- Lima, A., 10.1090/S0002-9947-1977-0430747-4, Trans. Amer. Math. Soc. 227 (1977), 1-62. (1977) Zbl0347.46017MR0430747DOI10.1090/S0002-9947-1977-0430747-4
- Lima, A., 10.1007/BF02760953, Israel J. Math. 84 (1993), 451-475. (1993) Zbl0814.46016MR1244680DOI10.1007/BF02760953
- Lima, A., 10.4064/sm-113-3-249-263, Studia Math. 113 (1995), 249-263. (1995) Zbl0826.46013MR1330210DOI10.4064/sm-113-3-249-263
- Lima, A., Nygaard, O., Oja, E., 10.1007/BF02810673, Israel J. Math. 119 (2000), 325-348. (2000) Zbl0983.46024MR1802659DOI10.1007/BF02810673
- Lima, A., Oja, E., Ideals of finite rank operators, intersection properties of balls, and the approximation property, Studia Math. 133 (1999), 175-186. (1999) Zbl0930.46020MR1686696
- Lima, A., Oja, E., 10.1090/S0002-9939-02-06615-7, Proc. Amer. Math. Soc. 130 (2002), 3631-3640 (electronic). (2002) Zbl1006.46004MR1920043DOI10.1090/S0002-9939-02-06615-7
- Lima, A., Oja, E., 10.1017/S144678870001017X, J. Aust. Math. Soc. 77 (2004), 91-110. (2004) Zbl1082.46016MR2069027DOI10.1017/S144678870001017X
- Lima, A., Oja, E., 10.1307/mmj/1091112074, Michigan Math. J. 52 (2004), 253-265. (2004) Zbl1069.46013MR2069799DOI10.1307/mmj/1091112074
- Lima, A., Oja, E., 10.1007/s00208-005-0656-0, Math. Ann. 333 (2005), 471-484. (2005) Zbl1097.46012MR2198796DOI10.1007/s00208-005-0656-0
- Lima, A., Oja, E., Rao, T. S. S. R. K., Werner, D., 10.1307/mmj/1029005074, Michigan Math. J. 41 (1994), 473-490. (1994) Zbl0823.46023MR1297703DOI10.1307/mmj/1029005074
- Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces I, Springer, Berlin-Heidelberg-New York (1977). (1977) Zbl0362.46013MR0500056
- Oja, E., Uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem, Eesti NSV Tead. Akad. Toimetised Füüs.-Mat. 33 (1984), 424-438, 473 Russian. (1984) MR0775767
- Oja, E., Strong uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem, Mat. Zametki 43 (1988), 237-246, 302 Russian; English translation in Math. Notes 43 (1988), 134-139. (1988) MR0939524
- Oja, E., Dual de l'espace des opérateurs linéaires continus, C. R. Acad. Sc. Paris, Sér. A 309 (1989), 983-986. (1989) Zbl0684.47025MR1054748
- Oja, E., Extension of functionals and the structure of the space of continuous linear operators, Tartu. Gos. Univ., Tartu (1991), Russian. (1991) Zbl0783.46016MR1114543
- Oja, E., 10.1112/S002557930001202X, Mathematika 44 (1997), 120-132. (1997) Zbl0878.46013MR1464382DOI10.1112/S002557930001202X
- Oja, E., 10.1090/S0002-9947-00-02521-6, Trans. Amer. Math. Soc. 352 (2000), 2801-2823. (2000) Zbl0954.46010MR1675226DOI10.1090/S0002-9947-00-02521-6
- Oja, E., 10.1017/S0013091502001165, Proc. Edinb. Math. Soc. 47 (2004), 679-694. (2004) Zbl1078.46012MR2097268DOI10.1017/S0013091502001165
- Oja, E., The impact of the Radon-Nikodým property on the weak bounded approximation property, Rev. R. Acad. Cien. Serie A. Mat. 100 (2006), 325-331. (2006) Zbl1112.46017MR2267414
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.