# A uniqueness theorem for invariantly harmonic functions in the unit ball of Cn.

Publicacions Matemàtiques (1992)

- Volume: 36, Issue: 2A, page 421-426
- ISSN: 0214-1493

## Access Full Article

top## Abstract

top## How to cite

topBruna, Joaquim. "A uniqueness theorem for invariantly harmonic functions in the unit ball of Cn.." Publicacions Matemàtiques 36.2A (1992): 421-426. <http://eudml.org/doc/41722>.

@article{Bruna1992,

abstract = {We prove a boundary uniqueness theorem for harmonic functions with respect to Bergman metric in the unit ball of Cn and give an application to a Runge type approximation theorem for such functions.},

author = {Bruna, Joaquim},

journal = {Publicacions Matemàtiques},

keywords = {boundary uniqueness theorem; harmonic functions; Bergman metric; Runge type approximation theorem},

language = {eng},

number = {2A},

pages = {421-426},

title = {A uniqueness theorem for invariantly harmonic functions in the unit ball of Cn.},

url = {http://eudml.org/doc/41722},

volume = {36},

year = {1992},

}

TY - JOUR

AU - Bruna, Joaquim

TI - A uniqueness theorem for invariantly harmonic functions in the unit ball of Cn.

JO - Publicacions Matemàtiques

PY - 1992

VL - 36

IS - 2A

SP - 421

EP - 426

AB - We prove a boundary uniqueness theorem for harmonic functions with respect to Bergman metric in the unit ball of Cn and give an application to a Runge type approximation theorem for such functions.

LA - eng

KW - boundary uniqueness theorem; harmonic functions; Bergman metric; Runge type approximation theorem

UR - http://eudml.org/doc/41722

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.