A uniqueness theorem for invariantly harmonic functions in the unit ball of Cn.
Publicacions Matemàtiques (1992)
- Volume: 36, Issue: 2A, page 421-426
- ISSN: 0214-1493
Access Full Article
topAbstract
topHow to cite
topBruna, Joaquim. "A uniqueness theorem for invariantly harmonic functions in the unit ball of Cn.." Publicacions Matemàtiques 36.2A (1992): 421-426. <http://eudml.org/doc/41722>.
@article{Bruna1992,
abstract = {We prove a boundary uniqueness theorem for harmonic functions with respect to Bergman metric in the unit ball of Cn and give an application to a Runge type approximation theorem for such functions.},
author = {Bruna, Joaquim},
journal = {Publicacions Matemàtiques},
keywords = {boundary uniqueness theorem; harmonic functions; Bergman metric; Runge type approximation theorem},
language = {eng},
number = {2A},
pages = {421-426},
title = {A uniqueness theorem for invariantly harmonic functions in the unit ball of Cn.},
url = {http://eudml.org/doc/41722},
volume = {36},
year = {1992},
}
TY - JOUR
AU - Bruna, Joaquim
TI - A uniqueness theorem for invariantly harmonic functions in the unit ball of Cn.
JO - Publicacions Matemàtiques
PY - 1992
VL - 36
IS - 2A
SP - 421
EP - 426
AB - We prove a boundary uniqueness theorem for harmonic functions with respect to Bergman metric in the unit ball of Cn and give an application to a Runge type approximation theorem for such functions.
LA - eng
KW - boundary uniqueness theorem; harmonic functions; Bergman metric; Runge type approximation theorem
UR - http://eudml.org/doc/41722
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.