top
We study the geometry of the second fundamental form of a Cauchy-Riemann submanifold of a Kaehlerian Finsler space M2n; any totally-real submanifold of M2n with v-flat normal connection is shown to be a Berwald-Cartan space.
@article{Dragomir1989, abstract = {We study the geometry of the second fundamental form of a Cauchy-Riemann submanifold of a Kaehlerian Finsler space M2n; any totally-real submanifold of M2n with v-flat normal connection is shown to be a Berwald-Cartan space.}, author = {Dragomir, Sorin}, journal = {Collectanea Mathematica}, keywords = {Geometría diferencial; Tensor; CR-submanifolds; Kählerian Finsler space; Invariant submanifolds}, language = {eng}, number = {3}, pages = {225-240}, title = {Cauchy-Riemann submanifolds of Kaehlerian Finsler spaces.}, url = {http://eudml.org/doc/41771}, volume = {40}, year = {1989}, }
TY - JOUR AU - Dragomir, Sorin TI - Cauchy-Riemann submanifolds of Kaehlerian Finsler spaces. JO - Collectanea Mathematica PY - 1989 VL - 40 IS - 3 SP - 225 EP - 240 AB - We study the geometry of the second fundamental form of a Cauchy-Riemann submanifold of a Kaehlerian Finsler space M2n; any totally-real submanifold of M2n with v-flat normal connection is shown to be a Berwald-Cartan space. LA - eng KW - Geometría diferencial; Tensor; CR-submanifolds; Kählerian Finsler space; Invariant submanifolds UR - http://eudml.org/doc/41771 ER -