top
Using elementary convexity arguments involving the Legendre transformation and the Prékopa-Leindler inequality, we prove the sharp Moser-Onofri inequality, which says that1/16π ∫|∇φ|2 + 1/4π ∫ φ - log (1/4π ∫ eφ) ≥ 0for any funcion φ ∈ C∞(S2).
Ghigi, Alessandro. "On the Moser-Onofri and Prékopa-Leindler inequalities.." Collectanea Mathematica 56.2 (2005): 143-156. <http://eudml.org/doc/41825>.
@article{Ghigi2005, abstract = {Using elementary convexity arguments involving the Legendre transformation and the Prékopa-Leindler inequality, we prove the sharp Moser-Onofri inequality, which says that1/16π ∫|∇φ|2 + 1/4π ∫ φ - log (1/4π ∫ eφ) ≥ 0for any funcion φ ∈ C∞(S2).}, author = {Ghigi, Alessandro}, journal = {Collectanea Mathematica}, keywords = {Desigualdades; Convexidad; Problemas variacionales; Moser-Trudinger inequality; Prekópa-Leindler inequality; Sobolev embedding; Moser-Onofri inequality; Legendre transform}, language = {eng}, number = {2}, pages = {143-156}, title = {On the Moser-Onofri and Prékopa-Leindler inequalities.}, url = {http://eudml.org/doc/41825}, volume = {56}, year = {2005}, }
TY - JOUR AU - Ghigi, Alessandro TI - On the Moser-Onofri and Prékopa-Leindler inequalities. JO - Collectanea Mathematica PY - 2005 VL - 56 IS - 2 SP - 143 EP - 156 AB - Using elementary convexity arguments involving the Legendre transformation and the Prékopa-Leindler inequality, we prove the sharp Moser-Onofri inequality, which says that1/16π ∫|∇φ|2 + 1/4π ∫ φ - log (1/4π ∫ eφ) ≥ 0for any funcion φ ∈ C∞(S2). LA - eng KW - Desigualdades; Convexidad; Problemas variacionales; Moser-Trudinger inequality; Prekópa-Leindler inequality; Sobolev embedding; Moser-Onofri inequality; Legendre transform UR - http://eudml.org/doc/41825 ER -