# A generalized sharp Whitney theorem for jets.

Revista Matemática Iberoamericana (2005)

- Volume: 21, Issue: 2, page 577-688
- ISSN: 0213-2230

## Access Full Article

top## Abstract

top## How to cite

topFefferman, Charles. "A generalized sharp Whitney theorem for jets.." Revista Matemática Iberoamericana 21.2 (2005): 577-688. <http://eudml.org/doc/41944>.

@article{Fefferman2005,

abstract = {Suppose that, for each point x in a given subset E ⊂ Rn, we are given an m-jet f(x) and a convex, symmetric set σ(x) of m-jets at x. We ask whether there exist a function F ∈ Cm,w(Rn) and a finite constant M, such that the m-jet of F at x belongs to f(x) + Mσ(x) for all x ∈ E. We give a necessary and sufficient condition for the existence of such F, M, provided each σ(x) satisfies a condition that we call "Whitnet w-convexity".},

author = {Fefferman, Charles},

journal = {Revista Matemática Iberoamericana},

keywords = {Funciones diferenciables; Jets; Convexidad},

language = {eng},

number = {2},

pages = {577-688},

title = {A generalized sharp Whitney theorem for jets.},

url = {http://eudml.org/doc/41944},

volume = {21},

year = {2005},

}

TY - JOUR

AU - Fefferman, Charles

TI - A generalized sharp Whitney theorem for jets.

JO - Revista Matemática Iberoamericana

PY - 2005

VL - 21

IS - 2

SP - 577

EP - 688

AB - Suppose that, for each point x in a given subset E ⊂ Rn, we are given an m-jet f(x) and a convex, symmetric set σ(x) of m-jets at x. We ask whether there exist a function F ∈ Cm,w(Rn) and a finite constant M, such that the m-jet of F at x belongs to f(x) + Mσ(x) for all x ∈ E. We give a necessary and sufficient condition for the existence of such F, M, provided each σ(x) satisfies a condition that we call "Whitnet w-convexity".

LA - eng

KW - Funciones diferenciables; Jets; Convexidad

UR - http://eudml.org/doc/41944

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.