A generalized sharp Whitney theorem for jets.
Revista Matemática Iberoamericana (2005)
- Volume: 21, Issue: 2, page 577-688
- ISSN: 0213-2230
Access Full Article
topAbstract
topHow to cite
topFefferman, Charles. "A generalized sharp Whitney theorem for jets.." Revista Matemática Iberoamericana 21.2 (2005): 577-688. <http://eudml.org/doc/41944>.
@article{Fefferman2005,
abstract = {Suppose that, for each point x in a given subset E ⊂ Rn, we are given an m-jet f(x) and a convex, symmetric set σ(x) of m-jets at x. We ask whether there exist a function F ∈ Cm,w(Rn) and a finite constant M, such that the m-jet of F at x belongs to f(x) + Mσ(x) for all x ∈ E. We give a necessary and sufficient condition for the existence of such F, M, provided each σ(x) satisfies a condition that we call "Whitnet w-convexity".},
author = {Fefferman, Charles},
journal = {Revista Matemática Iberoamericana},
keywords = {Funciones diferenciables; Jets; Convexidad},
language = {eng},
number = {2},
pages = {577-688},
title = {A generalized sharp Whitney theorem for jets.},
url = {http://eudml.org/doc/41944},
volume = {21},
year = {2005},
}
TY - JOUR
AU - Fefferman, Charles
TI - A generalized sharp Whitney theorem for jets.
JO - Revista Matemática Iberoamericana
PY - 2005
VL - 21
IS - 2
SP - 577
EP - 688
AB - Suppose that, for each point x in a given subset E ⊂ Rn, we are given an m-jet f(x) and a convex, symmetric set σ(x) of m-jets at x. We ask whether there exist a function F ∈ Cm,w(Rn) and a finite constant M, such that the m-jet of F at x belongs to f(x) + Mσ(x) for all x ∈ E. We give a necessary and sufficient condition for the existence of such F, M, provided each σ(x) satisfies a condition that we call "Whitnet w-convexity".
LA - eng
KW - Funciones diferenciables; Jets; Convexidad
UR - http://eudml.org/doc/41944
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.