Asymptotic windings over the trefoil knot.

Jacques Franchi

Revista Matemática Iberoamericana (2005)

  • Volume: 21, Issue: 3, page 729-770
  • ISSN: 0213-2230

Abstract

top
Consider the group G:=PSL2(R) and its subgroups Γ:= PSL2(Z) and Γ':=DSL2(Z). G/Γ is a canonical realization (up to an homeomorphism) of the complement S3T of the trefoil knot T, and G/Γ' is a canonical realization of the 6-fold branched cyclic cover of S3T, which has a 3-dimensional cohomology of 1-forms.Putting natural left-invariant Riemannian metrics on G, it makes sense to ask which is the asymptotic homology performed by the Brownian motion in G/Γ', describing thereby in an intrinsic way part of the asymptotic Brownian behavior in the fundamental group of the complement of the trefoil knot. A good basis of the cohomology of G/Γ', made of harmonic 1-forms, is calculated, and then the asymptotic Brownian behavior is obtained, by means of the joint asymptotic law of the integrals of the above basis along the Brownian paths.Finally the geodesics of G are determined, a natural class of ergodic measures for the geodesic flow is exhibited, and the asymptotic geodesic behavior in G/Γ' is calculated, by reduction to its Brownian analogue, though it is not precisely the same (counter to the hyperbolic case).

How to cite

top

Franchi, Jacques. "Asymptotic windings over the trefoil knot.." Revista Matemática Iberoamericana 21.3 (2005): 729-770. <http://eudml.org/doc/41949>.

@article{Franchi2005,
abstract = {Consider the group G:=PSL2(R) and its subgroups Γ:= PSL2(Z) and Γ':=DSL2(Z). G/Γ is a canonical realization (up to an homeomorphism) of the complement S3T of the trefoil knot T, and G/Γ' is a canonical realization of the 6-fold branched cyclic cover of S3T, which has a 3-dimensional cohomology of 1-forms.Putting natural left-invariant Riemannian metrics on G, it makes sense to ask which is the asymptotic homology performed by the Brownian motion in G/Γ', describing thereby in an intrinsic way part of the asymptotic Brownian behavior in the fundamental group of the complement of the trefoil knot. A good basis of the cohomology of G/Γ', made of harmonic 1-forms, is calculated, and then the asymptotic Brownian behavior is obtained, by means of the joint asymptotic law of the integrals of the above basis along the Brownian paths.Finally the geodesics of G are determined, a natural class of ergodic measures for the geodesic flow is exhibited, and the asymptotic geodesic behavior in G/Γ' is calculated, by reduction to its Brownian analogue, though it is not precisely the same (counter to the hyperbolic case).},
author = {Franchi, Jacques},
journal = {Revista Matemática Iberoamericana},
keywords = {Nudos topológicos; Movimiento browniano; trefoil knot; quasi-hyperbolic manifold; harmonic forms; Brownian motion; geodesic flow; ergodic measures; asymptotic laws},
language = {eng},
number = {3},
pages = {729-770},
title = {Asymptotic windings over the trefoil knot.},
url = {http://eudml.org/doc/41949},
volume = {21},
year = {2005},
}

TY - JOUR
AU - Franchi, Jacques
TI - Asymptotic windings over the trefoil knot.
JO - Revista Matemática Iberoamericana
PY - 2005
VL - 21
IS - 3
SP - 729
EP - 770
AB - Consider the group G:=PSL2(R) and its subgroups Γ:= PSL2(Z) and Γ':=DSL2(Z). G/Γ is a canonical realization (up to an homeomorphism) of the complement S3T of the trefoil knot T, and G/Γ' is a canonical realization of the 6-fold branched cyclic cover of S3T, which has a 3-dimensional cohomology of 1-forms.Putting natural left-invariant Riemannian metrics on G, it makes sense to ask which is the asymptotic homology performed by the Brownian motion in G/Γ', describing thereby in an intrinsic way part of the asymptotic Brownian behavior in the fundamental group of the complement of the trefoil knot. A good basis of the cohomology of G/Γ', made of harmonic 1-forms, is calculated, and then the asymptotic Brownian behavior is obtained, by means of the joint asymptotic law of the integrals of the above basis along the Brownian paths.Finally the geodesics of G are determined, a natural class of ergodic measures for the geodesic flow is exhibited, and the asymptotic geodesic behavior in G/Γ' is calculated, by reduction to its Brownian analogue, though it is not precisely the same (counter to the hyperbolic case).
LA - eng
KW - Nudos topológicos; Movimiento browniano; trefoil knot; quasi-hyperbolic manifold; harmonic forms; Brownian motion; geodesic flow; ergodic measures; asymptotic laws
UR - http://eudml.org/doc/41949
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.