Two geometric constants for operators acting on a separable Banach space.

E. Martín Peinador; E. Induráin; A. Plans Sanz de Bremond; A. A. Rodes Usan

Revista Matemática de la Universidad Complutense de Madrid (1988)

  • Volume: 1, Issue: 1-2-3, page 23-30
  • ISSN: 1139-1138

Abstract

top
The main result of this paper is the following: A separable Banach space X is reflexive if and only if the infimum of the Gelfand numbers of any bounded linear operator defined on X can be computed by means of just one sequence on nested, closed, finite codimensional subspaces with null intersection.

How to cite

top

Martín Peinador, E., et al. "Two geometric constants for operators acting on a separable Banach space.." Revista Matemática de la Universidad Complutense de Madrid 1.1-2-3 (1988): 23-30. <http://eudml.org/doc/43226>.

@article{MartínPeinador1988,
abstract = {The main result of this paper is the following: A separable Banach space X is reflexive if and only if the infimum of the Gelfand numbers of any bounded linear operator defined on X can be computed by means of just one sequence on nested, closed, finite codimensional subspaces with null intersection.},
author = {Martín Peinador, E., Induráin, E., Plans Sanz de Bremond, A., Rodes Usan, A. A.},
journal = {Revista Matemática de la Universidad Complutense de Madrid},
keywords = {Espacios de Banach; Espacio reflexivo; Operadores; Espacio de Hilbert separable real; infimum of the Gelfand numbers of any bounded linear operator},
language = {eng},
number = {1-2-3},
pages = {23-30},
title = {Two geometric constants for operators acting on a separable Banach space.},
url = {http://eudml.org/doc/43226},
volume = {1},
year = {1988},
}

TY - JOUR
AU - Martín Peinador, E.
AU - Induráin, E.
AU - Plans Sanz de Bremond, A.
AU - Rodes Usan, A. A.
TI - Two geometric constants for operators acting on a separable Banach space.
JO - Revista Matemática de la Universidad Complutense de Madrid
PY - 1988
VL - 1
IS - 1-2-3
SP - 23
EP - 30
AB - The main result of this paper is the following: A separable Banach space X is reflexive if and only if the infimum of the Gelfand numbers of any bounded linear operator defined on X can be computed by means of just one sequence on nested, closed, finite codimensional subspaces with null intersection.
LA - eng
KW - Espacios de Banach; Espacio reflexivo; Operadores; Espacio de Hilbert separable real; infimum of the Gelfand numbers of any bounded linear operator
UR - http://eudml.org/doc/43226
ER -

NotesEmbed ?

top

You must be logged in to post comments.