top
A class of locally convex vector spaces with a special Schauder decomposition is considered. It is proved that the elements of this class, which includes some spaces naturally appearing in infinite dimensional holomorphy, are quasinormable though in general they are neither metrizable nor Schwartz spaces.
Isidro, José M.. "Quasinormability of some spaces of holomorphic mappings.." Revista Matemática de la Universidad Complutense de Madrid 3.1 (1990): 13-17. <http://eudml.org/doc/43673>.
@article{Isidro1990, abstract = {A class of locally convex vector spaces with a special Schauder decomposition is considered. It is proved that the elements of this class, which includes some spaces naturally appearing in infinite dimensional holomorphy, are quasinormable though in general they are neither metrizable nor Schwartz spaces.}, author = {Isidro, José M.}, journal = {Revista Matemática de la Universidad Complutense de Madrid}, keywords = {Funciones de variable compleja; Espacios de funciones holomorfas; locally convex spaces with a special Schauder decomposition; infinite dimensional holomorphy; quasinormable; neither metrizable nor Schwartz spaces}, language = {eng}, number = {1}, pages = {13-17}, title = {Quasinormability of some spaces of holomorphic mappings.}, url = {http://eudml.org/doc/43673}, volume = {3}, year = {1990}, }
TY - JOUR AU - Isidro, José M. TI - Quasinormability of some spaces of holomorphic mappings. JO - Revista Matemática de la Universidad Complutense de Madrid PY - 1990 VL - 3 IS - 1 SP - 13 EP - 17 AB - A class of locally convex vector spaces with a special Schauder decomposition is considered. It is proved that the elements of this class, which includes some spaces naturally appearing in infinite dimensional holomorphy, are quasinormable though in general they are neither metrizable nor Schwartz spaces. LA - eng KW - Funciones de variable compleja; Espacios de funciones holomorfas; locally convex spaces with a special Schauder decomposition; infinite dimensional holomorphy; quasinormable; neither metrizable nor Schwartz spaces UR - http://eudml.org/doc/43673 ER -