top
By introducing the concept of randomness through notions of recursion theory, the set of the random numbers is effectively immune. The proof of this well-known result makes an essential use of the recursion theorem. In this paper, randomness is introduced starting from the more common notion of definability in Robinson's arithmetic and the same result is obtained using an extension of the fixed-point theorem, which we prove at the end of the paper. Finally we define a recursive function dominating the set of the random numbers, which consequently is not hyperimmune.
Prida, J. F.. "Aleatoreidad e inmunidad.." Revista Matemática de la Universidad Complutense de Madrid 8.2 (1995): 345-351. <http://eudml.org/doc/44189>.
@article{Prida1995, author = {Prida, J. F.}, journal = {Revista Matemática de la Universidad Complutense de Madrid}, keywords = {Función recursiva; Lógica matemática; Número aleatorio; Inmunidad; randomness; random numbers; effectively immune; extension of the fixed-point theorem; recursive function}, language = {spa}, number = {2}, pages = {345-351}, title = {Aleatoreidad e inmunidad.}, url = {http://eudml.org/doc/44189}, volume = {8}, year = {1995}, }
TY - JOUR AU - Prida, J. F. TI - Aleatoreidad e inmunidad. JO - Revista Matemática de la Universidad Complutense de Madrid PY - 1995 VL - 8 IS - 2 SP - 345 EP - 351 LA - spa KW - Función recursiva; Lógica matemática; Número aleatorio; Inmunidad; randomness; random numbers; effectively immune; extension of the fixed-point theorem; recursive function UR - http://eudml.org/doc/44189 ER -