# Bases of homology spaces of the Hilbert scheme of points in an algebraic surface.

Revista Matemática de la Universidad Complutense de Madrid (1996)

- Volume: 9, Issue: 1, page 53-66
- ISSN: 1139-1138

## Access Full Article

top## Abstract

top## How to cite

topHermoso, C., and Sols, I.. "Bases of homology spaces of the Hilbert scheme of points in an algebraic surface.." Revista Matemática de la Universidad Complutense de Madrid 9.1 (1996): 53-66. <http://eudml.org/doc/44212>.

@article{Hermoso1996,

abstract = {We find two basis of the spaces of rational homology of the Hilbert scheme of points in an algebraic surface, by exhibiting two candidates having as cardinalities the known Betti numbers of this scheme and showing that both intersect in a matrix of nonzero determinant.},

author = {Hermoso, C., Sols, I.},

journal = {Revista Matemática de la Universidad Complutense de Madrid},

keywords = {Grupos de homología; Bases de Hilbert; Superficies algebroides; Parametrización; Intersección; bases for rational homology group; Hilbert scheme; zero-dimensional subschemes; enumerative geometry},

language = {eng},

number = {1},

pages = {53-66},

title = {Bases of homology spaces of the Hilbert scheme of points in an algebraic surface.},

url = {http://eudml.org/doc/44212},

volume = {9},

year = {1996},

}

TY - JOUR

AU - Hermoso, C.

AU - Sols, I.

TI - Bases of homology spaces of the Hilbert scheme of points in an algebraic surface.

JO - Revista Matemática de la Universidad Complutense de Madrid

PY - 1996

VL - 9

IS - 1

SP - 53

EP - 66

AB - We find two basis of the spaces of rational homology of the Hilbert scheme of points in an algebraic surface, by exhibiting two candidates having as cardinalities the known Betti numbers of this scheme and showing that both intersect in a matrix of nonzero determinant.

LA - eng

KW - Grupos de homología; Bases de Hilbert; Superficies algebroides; Parametrización; Intersección; bases for rational homology group; Hilbert scheme; zero-dimensional subschemes; enumerative geometry

UR - http://eudml.org/doc/44212

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.