# On certain compact topological spaces.

Revista Matemática de la Universidad Complutense de Madrid (1997)

- Volume: 10, Issue: 1, page 81-84
- ISSN: 1139-1138

## Access Full Article

top## Abstract

top## How to cite

topValdivia, Manuel. "On certain compact topological spaces.." Revista Matemática de la Universidad Complutense de Madrid 10.1 (1997): 81-84. <http://eudml.org/doc/44244>.

@article{Valdivia1997,

abstract = {A compact topological space K is in the class A if it is homeomorphic to a subspace H of [0,1]I, for some set of indexes I, such that, if L is the subset of H consisting of all \{xi : i C I\} with xi=0 except for a countable number of i's, then L is dense in H. In this paper we show that the class A of compact spaces is not stable under continuous maps. This solves a problem posed by Deville, Godefroy and Zizler.},

author = {Valdivia, Manuel},

journal = {Revista Matemática de la Universidad Complutense de Madrid},

keywords = {Espacio topológico compacto; Homeomorfismos; Espacios de Banach; Funciones continuas; Funciones reales},

language = {eng},

number = {1},

pages = {81-84},

title = {On certain compact topological spaces.},

url = {http://eudml.org/doc/44244},

volume = {10},

year = {1997},

}

TY - JOUR

AU - Valdivia, Manuel

TI - On certain compact topological spaces.

JO - Revista Matemática de la Universidad Complutense de Madrid

PY - 1997

VL - 10

IS - 1

SP - 81

EP - 84

AB - A compact topological space K is in the class A if it is homeomorphic to a subspace H of [0,1]I, for some set of indexes I, such that, if L is the subset of H consisting of all {xi : i C I} with xi=0 except for a countable number of i's, then L is dense in H. In this paper we show that the class A of compact spaces is not stable under continuous maps. This solves a problem posed by Deville, Godefroy and Zizler.

LA - eng

KW - Espacio topológico compacto; Homeomorfismos; Espacios de Banach; Funciones continuas; Funciones reales

UR - http://eudml.org/doc/44244

ER -

## Citations in EuDML Documents

top- Ondřej F. K. Kalenda, Embedding of the ordinal segment $[0,{\omega}_{1}]$ into continuous images of Valdivia compacta
- Ondřej Kalenda, Continuous images and other topological properties of Valdivia compacta
- Ondřej Kalenda, Valdivia compacta and equivalent norms
- Ondřej F. K. Kalenda, Note on countable unions of Corson countably compact spaces

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.