A short intervals result for linear equations in two prime variables.

M. B. S. Laporta

Revista Matemática de la Universidad Complutense de Madrid (1997)

  • Volume: 10, Issue: 1, page 17-30
  • ISSN: 1139-1138

Abstract

top
Given A and B integers relatively prime, we prove that almost all integers n in an interval of the form [N, N+H], where N exp(1/3+e) ≤ H ≤ N can be written as a sum Ap1 + Bp2 = n, with p1 and p2 primes and e an arbitrary positive constant. This generalizes the results of Perelli et al. (1985) established in the classical case A=B=1 (Goldbach's problem).

How to cite

top

Laporta, M. B. S.. "A short intervals result for linear equations in two prime variables.." Revista Matemática de la Universidad Complutense de Madrid 10.1 (1997): 17-30. <http://eudml.org/doc/44248>.

@article{Laporta1997,
abstract = {Given A and B integers relatively prime, we prove that almost all integers n in an interval of the form [N, N+H], where N exp(1/3+e) ≤ H ≤ N can be written as a sum Ap1 + Bp2 = n, with p1 and p2 primes and e an arbitrary positive constant. This generalizes the results of Perelli et al. (1985) established in the classical case A=B=1 (Goldbach's problem).},
author = {Laporta, M. B. S.},
journal = {Revista Matemática de la Universidad Complutense de Madrid},
keywords = {Teoría algebraica de números; Números primos; Ecuaciones lineales; Generalización; Problema de Goldbach; generalized Goldbach conjecture; short intervals; circle method},
language = {eng},
number = {1},
pages = {17-30},
title = {A short intervals result for linear equations in two prime variables.},
url = {http://eudml.org/doc/44248},
volume = {10},
year = {1997},
}

TY - JOUR
AU - Laporta, M. B. S.
TI - A short intervals result for linear equations in two prime variables.
JO - Revista Matemática de la Universidad Complutense de Madrid
PY - 1997
VL - 10
IS - 1
SP - 17
EP - 30
AB - Given A and B integers relatively prime, we prove that almost all integers n in an interval of the form [N, N+H], where N exp(1/3+e) ≤ H ≤ N can be written as a sum Ap1 + Bp2 = n, with p1 and p2 primes and e an arbitrary positive constant. This generalizes the results of Perelli et al. (1985) established in the classical case A=B=1 (Goldbach's problem).
LA - eng
KW - Teoría algebraica de números; Números primos; Ecuaciones lineales; Generalización; Problema de Goldbach; generalized Goldbach conjecture; short intervals; circle method
UR - http://eudml.org/doc/44248
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.