# Multivariate Sturm-Habicht sequences: real root counting on n-rectangles and triangles.

Laureano González-Vega; Guadalupe Trujillo

Revista Matemática de la Universidad Complutense de Madrid (1997)

- Volume: 10, Issue: Supl., page 119-130
- ISSN: 1139-1138

## Access Full Article

top## Abstract

top## How to cite

topGonzález-Vega, Laureano, and Trujillo, Guadalupe. "Multivariate Sturm-Habicht sequences: real root counting on n-rectangles and triangles.." Revista Matemática de la Universidad Complutense de Madrid 10.Supl. (1997): 119-130. <http://eudml.org/doc/44255>.

@article{González1997,

abstract = {The main purpose of this note is to show how Sturm-Habicht Sequence can be generalized to the multivariate case and used to compute the number of real solutions of a polynomial system of equations with a finite number of complex solutions. Using the same techniques, some formulae counting the number of real solutions of such polynomial systems of equations inside n-dimensional rectangles or triangles in the plane are presented.},

author = {González-Vega, Laureano, Trujillo, Guadalupe},

journal = {Revista Matemática de la Universidad Complutense de Madrid},

keywords = {Ecuaciones polinómicas; Resolución de ecuaciones; Dimensiones; Entorno regular; Series; Números reales; Sturm-Habicht sequence; polynomial system of equations; real solutions},

language = {eng},

number = {Supl.},

pages = {119-130},

title = {Multivariate Sturm-Habicht sequences: real root counting on n-rectangles and triangles.},

url = {http://eudml.org/doc/44255},

volume = {10},

year = {1997},

}

TY - JOUR

AU - González-Vega, Laureano

AU - Trujillo, Guadalupe

TI - Multivariate Sturm-Habicht sequences: real root counting on n-rectangles and triangles.

JO - Revista Matemática de la Universidad Complutense de Madrid

PY - 1997

VL - 10

IS - Supl.

SP - 119

EP - 130

AB - The main purpose of this note is to show how Sturm-Habicht Sequence can be generalized to the multivariate case and used to compute the number of real solutions of a polynomial system of equations with a finite number of complex solutions. Using the same techniques, some formulae counting the number of real solutions of such polynomial systems of equations inside n-dimensional rectangles or triangles in the plane are presented.

LA - eng

KW - Ecuaciones polinómicas; Resolución de ecuaciones; Dimensiones; Entorno regular; Series; Números reales; Sturm-Habicht sequence; polynomial system of equations; real solutions

UR - http://eudml.org/doc/44255

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.