Multivariate Sturm-Habicht sequences: real root counting on n-rectangles and triangles.
Laureano González-Vega; Guadalupe Trujillo
Revista Matemática de la Universidad Complutense de Madrid (1997)
- Volume: 10, Issue: Supl., page 119-130
- ISSN: 1139-1138
Access Full Article
topAbstract
topHow to cite
topGonzález-Vega, Laureano, and Trujillo, Guadalupe. "Multivariate Sturm-Habicht sequences: real root counting on n-rectangles and triangles.." Revista Matemática de la Universidad Complutense de Madrid 10.Supl. (1997): 119-130. <http://eudml.org/doc/44255>.
@article{González1997,
	abstract = {The main purpose of this note is to show how Sturm-Habicht Sequence can be generalized to the multivariate case and used to compute the number of real solutions of a polynomial system of equations with a finite number of complex solutions. Using the same techniques, some formulae counting the number of real solutions of such polynomial systems of equations inside n-dimensional rectangles or triangles in the plane are presented.},
	author = {González-Vega, Laureano, Trujillo, Guadalupe},
	journal = {Revista Matemática de la Universidad Complutense de Madrid},
	keywords = {Ecuaciones polinómicas; Resolución de ecuaciones; Dimensiones; Entorno regular; Series; Números reales; Sturm-Habicht sequence; polynomial system of equations; real solutions},
	language = {eng},
	number = {Supl.},
	pages = {119-130},
	title = {Multivariate Sturm-Habicht sequences: real root counting on n-rectangles and triangles.},
	url = {http://eudml.org/doc/44255},
	volume = {10},
	year = {1997},
}
TY  - JOUR
AU  - González-Vega, Laureano
AU  - Trujillo, Guadalupe
TI  - Multivariate Sturm-Habicht sequences: real root counting on n-rectangles and triangles.
JO  - Revista Matemática de la Universidad Complutense de Madrid
PY  - 1997
VL  - 10
IS  - Supl.
SP  - 119
EP  - 130
AB  - The main purpose of this note is to show how Sturm-Habicht Sequence can be generalized to the multivariate case and used to compute the number of real solutions of a polynomial system of equations with a finite number of complex solutions. Using the same techniques, some formulae counting the number of real solutions of such polynomial systems of equations inside n-dimensional rectangles or triangles in the plane are presented.
LA  - eng
KW  - Ecuaciones polinómicas; Resolución de ecuaciones; Dimensiones; Entorno regular; Series; Números reales; Sturm-Habicht sequence; polynomial system of equations; real solutions
UR  - http://eudml.org/doc/44255
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
