The range of a contractive projection in Lp(H).
Revista Matemática Complutense (2004)
- Volume: 17, Issue: 2, page 485-512
- ISSN: 1139-1138
Access Full Article
topAbstract
topHow to cite
topRaynaud, Yves. "The range of a contractive projection in Lp(H).." Revista Matemática Complutense 17.2 (2004): 485-512. <http://eudml.org/doc/44525>.
@article{Raynaud2004,
abstract = {We show that the range of a contractive projection on a Lebesgue-Bochner space of Hilbert valued functions Lp(H) is isometric to a lp-direct sum of Hilbert-valued Lp-spaces. We explicit the structure of contractive projections. As a consequence for every 1 < p < ∞ the class Cp of lp-direct sums of Hilbert-valued Lp-spaces is axiomatizable (in the class of all Banach spaces).},
author = {Raynaud, Yves},
journal = {Revista Matemática Complutense},
keywords = {Espacios de Banach; Espacios de funciones; Proyecciones; Contracción; Ultraproductos; Espacios de Lebesgue; contractive projections; vector-valued -space},
language = {eng},
number = {2},
pages = {485-512},
title = {The range of a contractive projection in Lp(H).},
url = {http://eudml.org/doc/44525},
volume = {17},
year = {2004},
}
TY - JOUR
AU - Raynaud, Yves
TI - The range of a contractive projection in Lp(H).
JO - Revista Matemática Complutense
PY - 2004
VL - 17
IS - 2
SP - 485
EP - 512
AB - We show that the range of a contractive projection on a Lebesgue-Bochner space of Hilbert valued functions Lp(H) is isometric to a lp-direct sum of Hilbert-valued Lp-spaces. We explicit the structure of contractive projections. As a consequence for every 1 < p < ∞ the class Cp of lp-direct sums of Hilbert-valued Lp-spaces is axiomatizable (in the class of all Banach spaces).
LA - eng
KW - Espacios de Banach; Espacios de funciones; Proyecciones; Contracción; Ultraproductos; Espacios de Lebesgue; contractive projections; vector-valued -space
UR - http://eudml.org/doc/44525
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.