Necessary and sufficient Lyapunov-like conditions for robust nonlinear stabilization
Iasson Karafyllis; Zhong-Ping Jiang
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 16, Issue: 4, page 887-928
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- D. Aeyels and J. Peuteman, A new asymptotic stability criterion for nonlinear time-variant differential equations. IEEE Trans. Automat. Contr.43 (1998) 968–971.
- Z. Artstein, Stabilization with relaxed controls. Nonlinear Anal. Theory Methods Appl.7 (1983) 1163–1173.
- J.P. Aubin and H. Frankowska, Set-Valued Analysis. Birkhauser, Boston, USA (1990).
- F.H. Clarke, Y.S. Ledyaev, E.D. Sontag and A.I. Subbotin, Asymptotic controllability implies feedback stabilization. IEEE Trans. Automat. Contr.42 (1997) 1394–1407.
- J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs136. AMS, USA (2007).
- J.-M. Coron and L. Rosier, A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Syst. Estim. Contr.4 (1994) 67–84.
- R.A. Freeman and P.V. Kokotovic, Robust Nonlinear Control Design-State Space and Lyapunov Techniques. Birkhauser, Boston, USA (1996).
- J.K. Hale and S.M.V. Lunel, Introduction to Functional Differential Equations. Springer-Verlag, New York, USA (1993).
- C. Hua, G. Feng and X. Guan, Robust controller design of a class of nonlinear time delay systems via backstepping methods. Automatica44 (2008) 567–573.
- M. Jankovic, Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems. IEEE Trans. Automat. Contr. 46 (2001) 1048–1060.
- M. Jankovic, Stabilization of Nonlinear Time Delay Systems with Delay Independent Feedback, in Proceedings of the 2005 American Control Conference, Portland, OR, USA (2005) 4253–4258.
- Z.-P. Jiang, Y. Lin and Y. Wang, Stabilization of time-varying nonlinear systems: A control Lyapunov function approach, in Proceedings of IEEE International Conference on Control and Automation 2007, Guangzhou, China (2007) 404–409.
- I. Karafyllis, The non-uniform in time small-gain theorem for a wide class of control systems with outputs. Eur. J. Contr.10 (2004) 307–323.
- I. Karafyllis, Non-uniform in time robust global asymptotic output stability. Syst. Contr. Lett.54 (2005) 181–193.
- I. Karafyllis, Lyapunov theorems for systems described by retarded functional differential equations. Nonlinear Anal. Theory Methods Appl.64 (2006) 590–617.
- I. Karafyllis, A system-theoretic framework for a wide class of systems I: Applications to numerical analysis. J. Math. Anal. Appl.328 (2007) 876–899.
- I. Karafyllis and C. Kravaris, Robust output feedback stabilization and nonlinear observer design. Syst. Contr. Lett.54 (2005) 925–938.
- I. Karafyllis and J. Tsinias, A converse Lyapunov theorem for non-uniform in time global asymptotic stability and its application to feedback stabilization. SIAM J. Contr. Optim.42 (2003) 936–965.
- I. Karafyllis and J. Tsinias, Control Lyapunov functions and stabilization by means of continuous time-varying feedback. ESAIM: COCV15 (2009) 599–625.
- I. Karafyllis, P. Pepe and Z.-P. Jiang, Global output stability for systems described by retarded functional differential equations: Lyapunov characterizations. Eur. J. Contr.14 (2008) 516–536.
- M. Krstic, I. Kanellakopoulos and P.V. Kokotovic, Nonlinear and Adaptive Control Design. John Wiley (1995).
- Y. Lin, E.D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability. SIAM J. Contr. Optim.34 (1996) 124–160.
- F. Mazenc and P.-A. Bliman, Backstepping design for time-delay nonlinear systems. IEEE Trans. Automat. Contr.51 (2006) 149–154.
- F. Mazenc, M. Malisoff and Z. Lin, On input-to-state stability for nonlinear systems with delayed feedbacks, in Proceedings of the American Control Conference (2007), New York, USA (2007) 4804–4809.
- E. Moulay and W. Perruquetti, Stabilization of non-affine systems: A constructive method for polynomial systems. IEEE Trans. Automat. Contr.50 (2005) 520–526.
- S.K. Nguang, Robust stabilization of a class of time-delay nonlinear systems. IEEE Trans. Automat. Contr.45 (2000) 756–762.
- J. Peuteman and D. Aeyels, Exponential stability of nonlinear time-varying differential equations and partial averaging. Math. Contr. Signals Syst.15 (2002) 42–70.
- J. Peuteman and D. Aeyels, Exponential stability of slowly time-varying nonlinear systems. Math. Contr. Signals Syst.15 (2002) 202–228.
- L. Praly, G. Bastin, J.-B. Pomet and Z.P. Jiang, Adaptive stabilization of nonlinear systems, in Foundations of Adaptive Control, P.V. Kokotovic Ed., Springer-Verlag (1991) 374–433.
- E.D. Sontag, A universal construction of Artstein's theorem on nonlinear stabilization. Syst. Contr. Lett.13 (1989) 117–123.
- E.D. Sontag and Y. Wang, Notions of input to output stability. Syst. Contr. Lett.38 (1999) 235–248.
- E.D. Sontag, and Y. Wang, Lyapunov characterizations of input-to-output stability. SIAM J. Contr. Optim.39 (2001) 226–249.
- J. Tsinias, Sufficient Lyapunov-like conditions for stabilization. Math. Contr. Signals Syst.2 (1989) 343–357.
- J. Tsinias and N. Kalouptsidis, Output feedback stabilization. IEEE Trans. Automat. Contr.35 (1990) 951–954.
- S. Zhou, G. Feng and S.K. Nguang, Comments on robust stabilization of a class of time-delay nonlinear systems. IEEE Trans. Automat. Contr.47 (2002) 1586–1586.