The distribution of powers of integers in algebraic number fields

Werner Georg Nowak[1]; Johannes Schoißengeier[2]

  • [1] Institute of Mathematics Department of Integrative Biology BOKU - University of Natural Resources and Applied Life Sciences Peter Jordan-Straße 82 A-1190 Wien, Austria
  • [2] Institut für Mathematik der Universität Wien Nordbergstraße 15 A-1090 Wien, Austria

Journal de Théorie des Nombres de Bordeaux (2004)

  • Volume: 16, Issue: 1, page 197-214
  • ISSN: 1246-7405

Abstract

top
For an arbitrary (not totally real) number field K of degree 3 , we ask how many perfect powers γ p of algebraic integers γ in K exist, such that μ ( τ ( γ p ) ) X for each embedding τ of K into the complex field. ( X a large real parameter, p 2 a fixed integer, and μ ( z ) = max ( | Re ( z ) | , | Im ( z ) | ) for any complex z .) This quantity is evaluated asymptotically in the form c p , K X n / p + R p , K ( X ) , with sharp estimates for the remainder R p , K ( X ) . The argument uses techniques from lattice point theory along with W. Schmidt’s multivariate extension of K.F. Roth’s result on the approximation of algebraic numbers by rationals.

How to cite

top

Nowak, Werner Georg, and Schoißengeier, Johannes. "The distribution of powers of integers in algebraic number fields." Journal de Théorie des Nombres de Bordeaux 16.1 (2004): 197-214. <http://eudml.org/doc/249273>.

@article{Nowak2004,
abstract = {For an arbitrary (not totally real) number field $K$ of degree $\ge 3$, we ask how many perfect powers $\gamma ^p$ of algebraic integers $\gamma $ in $K$ exist, such that $\mu (\tau (\gamma ^p))\le X$ for each embedding $\tau $ of $K$ into the complex field. ($X$ a large real parameter, $p\ge 2$ a fixed integer, and $\mu (z)=\max (|\{\rm Re\}(z)|,|\{\rm Im\}(z)|)$ for any complex $z$.) This quantity is evaluated asymptotically in the form $c_\{p,K\} X^\{n/p\} + R_\{p,K\}(X)$, with sharp estimates for the remainder $R_\{p,K\}(X)$. The argument uses techniques from lattice point theory along with W. Schmidt’s multivariate extension of K.F. Roth’s result on the approximation of algebraic numbers by rationals.},
affiliation = {Institute of Mathematics Department of Integrative Biology BOKU - University of Natural Resources and Applied Life Sciences Peter Jordan-Straße 82 A-1190 Wien, Austria; Institut für Mathematik der Universität Wien Nordbergstraße 15 A-1090 Wien, Austria},
author = {Nowak, Werner Georg, Schoißengeier, Johannes},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {asymptotic results on algebraic numbers; lattice points},
language = {eng},
number = {1},
pages = {197-214},
publisher = {Université Bordeaux 1},
title = {The distribution of powers of integers in algebraic number fields},
url = {http://eudml.org/doc/249273},
volume = {16},
year = {2004},
}

TY - JOUR
AU - Nowak, Werner Georg
AU - Schoißengeier, Johannes
TI - The distribution of powers of integers in algebraic number fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 1
SP - 197
EP - 214
AB - For an arbitrary (not totally real) number field $K$ of degree $\ge 3$, we ask how many perfect powers $\gamma ^p$ of algebraic integers $\gamma $ in $K$ exist, such that $\mu (\tau (\gamma ^p))\le X$ for each embedding $\tau $ of $K$ into the complex field. ($X$ a large real parameter, $p\ge 2$ a fixed integer, and $\mu (z)=\max (|{\rm Re}(z)|,|{\rm Im}(z)|)$ for any complex $z$.) This quantity is evaluated asymptotically in the form $c_{p,K} X^{n/p} + R_{p,K}(X)$, with sharp estimates for the remainder $R_{p,K}(X)$. The argument uses techniques from lattice point theory along with W. Schmidt’s multivariate extension of K.F. Roth’s result on the approximation of algebraic numbers by rationals.
LA - eng
KW - asymptotic results on algebraic numbers; lattice points
UR - http://eudml.org/doc/249273
ER -

References

top
  1. S. Bochner, Die Poissonsche Summenformel in mehreren Veränderlichen. Math. Ann. 106 (1932), 55–63. Zbl0003.25104MR1512748
  2. N. Bourbaki, Elements of mathematics, Algebra II. Springer, Berlin 1990. Zbl0719.12001MR1080964
  3. M.N. Huxley, Exponential sums and lattice points II. Proc. London Math. Soc. 66 (1993), 279-301. Zbl0820.11060MR1199067
  4. M.N. Huxley, Area, lattice points, and exponential sums. LMS Monographs, New Ser. 13, Oxford 1996. Zbl0861.11002MR1420620
  5. E. Krätzel, Lattice points. Kluwer, Dordrecht 1988. Zbl0675.10031MR998378
  6. E. Krätzel, Analytische Funktionen in der Zahlentheorie. Teubner, Stuttgart 2000. Zbl0962.11001MR1889901
  7. G. Kuba, On the distribution of squares of integral quaternions. Acta Arithm. 93 (2000), 359–372. Zbl0947.11028MR1759481
  8. G. Kuba, On the distribution of squares of integral quaternions II. Acta Arithm. 101 (2002), 81–95. Zbl1004.11054MR1879846
  9. G. Kuba, On the distribution of squares of hypercomplex integers. J. Number Th. 88 (2001), 313–334. Zbl0992.11056MR1832009
  10. G. Kuba, Zur Verteilung der Quadrate ganzer Zahlen in rationalen Quaternionenalgebren. Abh. Math. Sem. Hamburg 72 (2002), 145–163. Zbl1014.11059MR1941551
  11. G. Kuba, On the distribution of squares of integral Cayley numbers. Acta Arithm. 108 (2003), 253–265. Zbl1028.11061MR1980511
  12. G. Kuba, H. Müller, W.G. Nowak and J. Schoißengeier, Zur Verteilung der Potenzen ganzer Zahlen eines komplexen kubischen Zahlkörpers. Abh. Math. Sem. Hamburg 70 (2000), 341–354. Zbl1008.11039MR1809556
  13. L. Kuipers and H. Niederreiter, Uniform distribution of sequences. J. Wiley, New York 1974. Zbl0281.10001MR419394
  14. H. Müller and W.G. Nowak, Potenzen von Gaußschen ganzen Zahlen in Quadraten. Mitt. Math. Ges. Hamburg 18 (1999), 119–126. Zbl1027.11073MR1727522
  15. W. Müller, On the average order of the lattice rest of a convex body. Acta Arithm. 80 (1997), 89–100. Zbl0871.11070MR1450420
  16. W. Narkiewicz, Elementary and analytic theory of algebraic numbers. 2 nd ed., Springer, Berlin 1990. Zbl1159.11039MR1055830
  17. W.G. Nowak, Zur Verteilung der Potenzen Gaußscher ganzer Zahlen. Abh. Math. Sem. Hamburg 73 (2003), 43–65. Zbl1053.11081MR2028506
  18. G. Opfer and W. Ripken, Complex version of Catalań’s problem. Mitt. Math. Ges. Hamburg 17 (1998), 101–112. Zbl1007.11014MR1660928
  19. K.F. Roth, Rational approximations to algebraic numbers. Mathematika 2 (1955), 1–20. Zbl0064.28501MR72182
  20. W.M. Schmidt, Simultaneous approximation to algebraic numbers by rationals. Acta Math. 125 (1970), 189–201. Zbl0205.06702MR268129
  21. W.M. Schmidt, Diophantine approximation. LNM 785, Springer, Berlin 1980. Zbl0421.10019MR568710
  22. Wolfram Research, Inc. Mathematica, Version 4.0. Wolfram Research, Inc. Champaign 1999. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.