# Multivariable Christoffel-Darboux kernels and characteristic polynomials of random hermitian matrices.

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only] (2006)

- Volume: 2, page Paper 085, 12 p., electronic only-Paper 085, 12 p., electronic only
- ISSN: 1815-0659

## Access Full Article

top## How to cite

topRosengren, Hjalmar. "Multivariable Christoffel-Darboux kernels and characteristic polynomials of random hermitian matrices.." SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only] 2 (2006): Paper 085, 12 p., electronic only-Paper 085, 12 p., electronic only. <http://eudml.org/doc/53818>.

@article{Rosengren2006,

author = {Rosengren, Hjalmar},

journal = {SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]},

keywords = {Christoffel-Darboux kernel; multivariable orthogonal polynomial; Pfaffian; determinant; correlation function; random Hermitian matrix; orthogonal polynomial ensemble; Sundquist's identities},

language = {eng},

pages = {Paper 085, 12 p., electronic only-Paper 085, 12 p., electronic only},

publisher = {Department of Applied Research, Institute of Mathematics of National Academy of Sciences of Ukraine},

title = {Multivariable Christoffel-Darboux kernels and characteristic polynomials of random hermitian matrices.},

url = {http://eudml.org/doc/53818},

volume = {2},

year = {2006},

}

TY - JOUR

AU - Rosengren, Hjalmar

TI - Multivariable Christoffel-Darboux kernels and characteristic polynomials of random hermitian matrices.

JO - SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

PY - 2006

PB - Department of Applied Research, Institute of Mathematics of National Academy of Sciences of Ukraine

VL - 2

SP - Paper 085, 12 p., electronic only

EP - Paper 085, 12 p., electronic only

LA - eng

KW - Christoffel-Darboux kernel; multivariable orthogonal polynomial; Pfaffian; determinant; correlation function; random Hermitian matrix; orthogonal polynomial ensemble; Sundquist's identities

UR - http://eudml.org/doc/53818

ER -