Every Frame is a Sum of Three (But Not Two) Orthonormal Bases-and Other Frame Representations.
The journal of Fourier analysis and applications [[Elektronische Ressource]] (1998)
- Volume: 4, Issue: 6, page 727-732
- ISSN: 1069-5869; 1531-5851/e
Access Full Article
topHow to cite
topCasazza, Peter G.. "Every Frame is a Sum of Three (But Not Two) Orthonormal Bases-and Other Frame Representations.." The journal of Fourier analysis and applications [[Elektronische Ressource]] 4.6 (1998): 727-732. <http://eudml.org/doc/59591>.
@article{Casazza1998,
author = {Casazza, Peter G.},
journal = {The journal of Fourier analysis and applications [[Elektronische Ressource]]},
keywords = {frame for a Hilbert space; orthonormal bases; Riesz basis; tight frames},
number = {6},
pages = {727-732},
title = {Every Frame is a Sum of Three (But Not Two) Orthonormal Bases-and Other Frame Representations.},
url = {http://eudml.org/doc/59591},
volume = {4},
year = {1998},
}
TY - JOUR
AU - Casazza, Peter G.
TI - Every Frame is a Sum of Three (But Not Two) Orthonormal Bases-and Other Frame Representations.
JO - The journal of Fourier analysis and applications [[Elektronische Ressource]]
PY - 1998
VL - 4
IS - 6
SP - 727
EP - 732
KW - frame for a Hilbert space; orthonormal bases; Riesz basis; tight frames
UR - http://eudml.org/doc/59591
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.