Многообразия алгебр Ли с тождеством [ [ x 1 , x 2 , x 3 ] , [ x 4 , x 5 , x 6 ] ] = 0 над полем характеристики нуль.

И.Б. Воличенко

Sibirskij matematiceskij zurnal (1984)

  • Volume: 25, Issue: 3, page 40-54
  • ISSN: 0037-4466; 1573-9260/e

How to cite

top

Воличенко, И.Б.. "Многообразия алгебр Ли с тождеством $[[x_1,x_2,x_3],[x_4,x_5,x_6]]=0$ над полем характеристики нуль.." Sibirskij matematiceskij zurnal 25.3 (1984): 40-54. <http://eudml.org/doc/62418>.

@article{Воличенко1984,
author = {Воличенко, И.Б.},
journal = {Sibirskij matematiceskij zurnal},
keywords = {weak polynomial identities characteristic zero; variety of Lie algebras; Specht property; finite system of identities; representation theory of symmetry groups; free associative algebra},
language = {rus},
number = {3},
pages = {40-54},
publisher = {Izd. AN SSSR},
title = {Многообразия алгебр Ли с тождеством $[[x_1,x_2,x_3],[x_4,x_5,x_6]]=0$ над полем характеристики нуль.},
url = {http://eudml.org/doc/62418},
volume = {25},
year = {1984},
}

TY - JOUR
AU - Воличенко, И.Б.
TI - Многообразия алгебр Ли с тождеством $[[x_1,x_2,x_3],[x_4,x_5,x_6]]=0$ над полем характеристики нуль.
JO - Sibirskij matematiceskij zurnal
PY - 1984
PB - Izd. AN SSSR
VL - 25
IS - 3
SP - 40
EP - 54
LA - rus
KW - weak polynomial identities characteristic zero; variety of Lie algebras; Specht property; finite system of identities; representation theory of symmetry groups; free associative algebra
UR - http://eudml.org/doc/62418
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.