Algebraic points of abelian functions in two variables
Annales de la Faculté des sciences de Toulouse : Mathématiques (1982)
- Volume: 4, Issue: 2, page 153-163
- ISSN: 0240-2963
Access Full Article
topHow to cite
topBijlsma, Alex. "Algebraic points of abelian functions in two variables." Annales de la Faculté des sciences de Toulouse : Mathématiques 4.2 (1982): 153-163. <http://eudml.org/doc/73133>.
@article{Bijlsma1982,
author = {Bijlsma, Alex},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {algebraic points of abelian functions; transcendence; simultaneous approximation; abelian varieties; theta homomorphism; abelian analogue of Franklin-Schneider theorem},
language = {eng},
number = {2},
pages = {153-163},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Algebraic points of abelian functions in two variables},
url = {http://eudml.org/doc/73133},
volume = {4},
year = {1982},
}
TY - JOUR
AU - Bijlsma, Alex
TI - Algebraic points of abelian functions in two variables
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1982
PB - UNIVERSITE PAUL SABATIER
VL - 4
IS - 2
SP - 153
EP - 163
LA - eng
KW - algebraic points of abelian functions; transcendence; simultaneous approximation; abelian varieties; theta homomorphism; abelian analogue of Franklin-Schneider theorem
UR - http://eudml.org/doc/73133
ER -
References
top- [1] A. Bijlsma. «An elliptic analogue of the Franklin-Schneider theorem». Ann. Fac. Sci. Toulouse (5) 2 (1980), 101-116. Zbl0447.10034MR595193
- [2] W.D. Brownawell & D.W. Masser. «Multiplicity estimates for analytic functions». II. Duke Math. J.47 (1980), 273-295. Zbl0461.10027
- [3] Y.Z. Flicker. «Transcendence theory over local fields». Ph. D. Thesis, Cambridge, (1978).
- [4] H. Grauert & K. Fritzsche. «Several complex variables». Springer-Verlag, New-York, (1976). Zbl0381.32001
- [5] S. Lang. «Introduction to transcendental numbers». Addison-Wesley Publ. Co., Reading (Mass.), (1966). Zbl0144.04101MR214547
- [6] S. Lang. «Diophantine approximation on abelian varieties with complex multiplication». Adv. Math.17 (1975), 281-336. Zbl0306.14019
- [7] D.W. Masser. «On the periods of abelian functions in two variables». Mathematika22 (1975), 97-107. Zbl0318.14010MR399000
- [8] M. Mignotte & M. Waldschmidt. «Linear forms in two logarithms and Schneider's method». Math. Ann.231 (1978), 241-267. Zbl0349.10029
- [9] D. Mumford. «Algebraic geometry, I. Complex projective varieties». Springer-Verlag, Berlin, (1976). Zbl0356.14002MR453732
- [10] H.P.F. Swinnerton-Dyer. «Analytic theory of abelian varieties». London Math. Soc. Lecture note Series14. Cambridge University Press, (1974). Zbl0299.14021MR366934
- [11] M. Waldschmidt. «Nombres transcendants». Lecture Notes in Math.402. Springer-Verlag, Berlin, (1974). Zbl0302.10030MR360483
- [12] M. Waldschmidt. «Nombres transcendants et groupes algébriques». Astérisque, 69-70 (1979). Zbl0428.10017MR570648
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.