An elliptic analogue of the Franklin-Schneider theorem

Alex Bijlsma

Annales de la Faculté des sciences de Toulouse : Mathématiques (1980)

  • Volume: 2, Issue: 2, page 101-116
  • ISSN: 0240-2963

How to cite

top

Bijlsma, Alex. "An elliptic analogue of the Franklin-Schneider theorem." Annales de la Faculté des sciences de Toulouse : Mathématiques 2.2 (1980): 101-116. <http://eudml.org/doc/73102>.

@article{Bijlsma1980,
author = {Bijlsma, Alex},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Weierstrass elliptic function; lower bound; simultaneous approximation by algebraic numbers},
language = {eng},
number = {2},
pages = {101-116},
publisher = {UNIVERSITE PAUL SABATIER},
title = {An elliptic analogue of the Franklin-Schneider theorem},
url = {http://eudml.org/doc/73102},
volume = {2},
year = {1980},
}

TY - JOUR
AU - Bijlsma, Alex
TI - An elliptic analogue of the Franklin-Schneider theorem
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1980
PB - UNIVERSITE PAUL SABATIER
VL - 2
IS - 2
SP - 101
EP - 116
LA - eng
KW - Weierstrass elliptic function; lower bound; simultaneous approximation by algebraic numbers
UR - http://eudml.org/doc/73102
ER -

References

top
  1. [1] L.V. Ahlfors. «Complex analysis». 2nd edition. McGraw-Hill Book co., New-York, 1966. Zbl0154.31904MR510197
  2. [2] A. Bijlsma. «On the simultaneous approximation of a, b and ab». Compositio Math.35 (1977), 99-111. Zbl0355.10025MR450206
  3. [3] A. Bijlsma & P.L. Cijsouw. «Dependence relations of logarithms of algebraic numbers». Zbl0484.10022
  4. [4] W.D. Brownawell & D.W. Masser. «Multiplicity estimates for analytic functions (I)». Zbl0417.10027
  5. [5] P.L. Cijsouw & M. Waldschmidt. «Linear forms and simultaneous approximations». Compositio Math.34 (1977), 173-197. Zbl0345.10021
  6. [6] N.I. FEL'DMAN. «The periods of elliptic functions». (in Russian). Acta Arith.24 (1973/74), 477-489. Zbl0273.10032MR340188
  7. [7] S. Lang. «Elliptic curves, diophantine analysis». Springer-Verlag, Berlin, 1978. Zbl0388.10001MR518817
  8. [8] D.W. Masser. «Elliptic functions and transcendence». Lecture Notes in Mathematics437, Springer-Verlag, Berlin, 1975. Zbl0312.10023MR379391
  9. [9] D.W. Masser. «Some recent results in transcendence theory». Astérisque61 (1979), 145-154. Zbl0402.10036MR556671
  10. [10] E. Reyssat. «Approximation algébrique de nombres liés aux fonctions elliptiques et exponentielle». Zbl0432.10018
  11. [11] M. Waldschmidt. «Nombres transcendants». Lecture Notes in Mathematics402. Springer-Verlag, Berlin, 1974. Zbl0302.10030MR360483
  12. [12] M. Waldschmidt. «Simultaneous approximation of numbers connected with the exponential function». J. Austral. Math. Soc. (Ser. A) 25 (1978), 466-478. Zbl0388.10023MR506049

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.