An elliptic analogue of the Franklin-Schneider theorem

Alex Bijlsma

Annales de la Faculté des sciences de Toulouse : Mathématiques (1980)

  • Volume: 2, Issue: 2, page 101-116
  • ISSN: 0240-2963

How to cite

top

Bijlsma, Alex. "An elliptic analogue of the Franklin-Schneider theorem." Annales de la Faculté des sciences de Toulouse : Mathématiques 2.2 (1980): 101-116. <http://eudml.org/doc/73102>.

@article{Bijlsma1980,
author = {Bijlsma, Alex},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Weierstrass elliptic function; lower bound; simultaneous approximation by algebraic numbers},
language = {eng},
number = {2},
pages = {101-116},
publisher = {UNIVERSITE PAUL SABATIER},
title = {An elliptic analogue of the Franklin-Schneider theorem},
url = {http://eudml.org/doc/73102},
volume = {2},
year = {1980},
}

TY - JOUR
AU - Bijlsma, Alex
TI - An elliptic analogue of the Franklin-Schneider theorem
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1980
PB - UNIVERSITE PAUL SABATIER
VL - 2
IS - 2
SP - 101
EP - 116
LA - eng
KW - Weierstrass elliptic function; lower bound; simultaneous approximation by algebraic numbers
UR - http://eudml.org/doc/73102
ER -

References

top
  1. [1] L.V. Ahlfors. «Complex analysis». 2nd edition. McGraw-Hill Book co., New-York, 1966. Zbl0154.31904MR510197
  2. [2] A. Bijlsma. «On the simultaneous approximation of a, b and ab». Compositio Math.35 (1977), 99-111. Zbl0355.10025MR450206
  3. [3] A. Bijlsma & P.L. Cijsouw. «Dependence relations of logarithms of algebraic numbers». Zbl0484.10022
  4. [4] W.D. Brownawell & D.W. Masser. «Multiplicity estimates for analytic functions (I)». Zbl0417.10027
  5. [5] P.L. Cijsouw & M. Waldschmidt. «Linear forms and simultaneous approximations». Compositio Math.34 (1977), 173-197. Zbl0345.10021
  6. [6] N.I. FEL'DMAN. «The periods of elliptic functions». (in Russian). Acta Arith.24 (1973/74), 477-489. Zbl0273.10032MR340188
  7. [7] S. Lang. «Elliptic curves, diophantine analysis». Springer-Verlag, Berlin, 1978. Zbl0388.10001MR518817
  8. [8] D.W. Masser. «Elliptic functions and transcendence». Lecture Notes in Mathematics437, Springer-Verlag, Berlin, 1975. Zbl0312.10023MR379391
  9. [9] D.W. Masser. «Some recent results in transcendence theory». Astérisque61 (1979), 145-154. Zbl0402.10036MR556671
  10. [10] E. Reyssat. «Approximation algébrique de nombres liés aux fonctions elliptiques et exponentielle». Zbl0432.10018
  11. [11] M. Waldschmidt. «Nombres transcendants». Lecture Notes in Mathematics402. Springer-Verlag, Berlin, 1974. Zbl0302.10030MR360483
  12. [12] M. Waldschmidt. «Simultaneous approximation of numbers connected with the exponential function». J. Austral. Math. Soc. (Ser. A) 25 (1978), 466-478. Zbl0388.10023MR506049

NotesEmbed ?

top

You must be logged in to post comments.