New operators on jet spaces

L. Mangiarotti; Marco Modugno

Annales de la Faculté des sciences de Toulouse : Mathématiques (1983)

  • Volume: 5, Issue: 2, page 171-198
  • ISSN: 0240-2963

How to cite

top

Mangiarotti, L., and Modugno, Marco. "New operators on jet spaces." Annales de la Faculté des sciences de Toulouse : Mathématiques 5.2 (1983): 171-198. <http://eudml.org/doc/73147>.

@article{Mangiarotti1983,
author = {Mangiarotti, L., Modugno, Marco},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {infinitesimal contact transformations; jet functor; tangent functor; prolongations of vector fields},
language = {eng},
number = {2},
pages = {171-198},
publisher = {UNIVERSITE PAUL SABATIER},
title = {New operators on jet spaces},
url = {http://eudml.org/doc/73147},
volume = {5},
year = {1983},
}

TY - JOUR
AU - Mangiarotti, L.
AU - Modugno, Marco
TI - New operators on jet spaces
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1983
PB - UNIVERSITE PAUL SABATIER
VL - 5
IS - 2
SP - 171
EP - 198
LA - eng
KW - infinitesimal contact transformations; jet functor; tangent functor; prolongations of vector fields
UR - http://eudml.org/doc/73147
ER -

References

top
  1. [1] V. Aldaya - J.A. de Azcarraga. «Variational principles on r-th order jets of fibre bundles in field theory». J. Math. Phys., 19(9), 1978, p. 1869-1875. Zbl0415.58010MR496116
  2. [2] P.L. Garcia. «The Poincaré-Cartan invariant in the calculus of variations». Symposia Mathematica, XIV, A.P., 1974, p. 219-246. Zbl0303.53040MR406246
  3. [3] H. Goldschmidt. «Integrability criteria for systems of non-linear partial differential equations». J. Diff. Geom., 1967, p. 269-307. Zbl0159.14101MR226156
  4. [4] H. Goldschmidt - S. Sternberg. «The Hamilton-Cartan formalism in the calculus of variations». Ann. Inst. Fourier, 23, 1973, p. 203-267. Zbl0243.49011MR341531
  5. [5] R. Hermann. «Geometry, physics and systems». M. Dekker Inc. 1973. Zbl0285.58001MR494183
  6. [6] D. Krupka. «A geometric theory of ordinary first order variational problems in fibered manifolds. I. Critical sections». J. of Math. Analysis and applic.49, 1975, p. 180-206. Zbl0312.58002MR362397
  7. [7] B. Kuperschmidt. «Geometry of jet bundles and the structure of lagrangian and hamiltonian formalism». Lecture notes in Math.775, Springer, Berlin, 1980, p. 162-217. Zbl0439.58016MR569303
  8. [8] L. Mangiarotti - M. Modugno. «Some results on the calculus of variations on jet spaces». To appear on Ann. I nst. H. Poincaré. Zbl0519.49028MR715130
  9. [9] M. Modugno - R. Ragionieri - G. Stefani. «Differential pseudo-connections and field theories». Ann. Inst. H. Poincaré, XXXIV n° 4,1981, p. 465-496. Zbl0478.70015MR625175
  10. [10] R. Ouzilou. «Expression symplectique des problèmes variationnelles». Symposia Mathematica, XIV, A.P., 1974, p. 85-98. Zbl0307.58002MR385923
  11. [11] A. Perez-Rendon. «A minimal interaction principle for classical fields». Symposia Mathematica, XIV, A.P., 1974, p. 293-321. Zbl0305.49049MR406000
  12. [12] W.M. Tulczyjew. «The Euler-Lagrange resolution». Lecture notes in Mathematical Physics, Differential geometrical methods in Mathematical Physics, 836, Springer-Verlag, 1980, p. 22-48. Zbl0456.58012MR607685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.