A General Existence Theorem for Surfaces of Constant Mean Curvature.
In this paper, we generalize to sub-Riemannian Carnot groups some classical results in the theory of minimal submanifolds. Our main results are for step 2 Carnot groups. In this case, we will prove the convex hull property and some “exclosure theorems” for H-minimal hypersurfaces of class C2 satisfying a Hörmander-type condition.
Ce travail est essentiellement consacré aux systèmes dynamiques non conservatifs, la force généralisée dépendant à la fois des paramètres de position et de vitesse . désignant l’espace-temps de configuration, l’espace fibré des vecteurs tangents, celui des directions tangentes à , on caractérise par son lagrangien homogène et le tenseur-force antisymétrique dont le produit contracté par le vecteur vitesse donne le vecteur force généralisé.Dans la première partie, on étudie l’algèbre...
In this work, we consider variational problems defined by -invariant Lagrangians on the -jet prolongation of a principal bundle , where is the structure group of . These problems can be also considered as defined on the associated bundle of the -th order connections. The correspondence between the Euler-Lagrange equations for these variational problems and conservation laws is discussed.
The motivation for this work is the real-time solution of a standard optimal control problem arising in robotics and aerospace applications. For example, the trajectory planning problem for air vehicles is naturally cast as an optimal control problem on the tangent bundle of the Lie Group which is also a parallelizable riemannian manifold. For an optimal control problem on the tangent bundle of such a manifold, we use frame co-ordinates and obtain first-order necessary conditions employing calculus...
The motivation for this work is the real-time solution of a standard optimal control problem arising in robotics and aerospace applications. For example, the trajectory planning problem for air vehicles is naturally cast as an optimal control problem on the tangent bundle of the Lie Group SE(3), which is also a parallelizable Riemannian manifold. For an optimal control problem on the tangent bundle of such a manifold, we use frame co-ordinates and obtain first-order necessary conditions...
The aim of the present work is to present a geometric formulation of higher order variational problems on arbitrary fibred manifolds. The problems of Engineering and Mathematical Physics whose natural formulation requires the use of second order differential invariants are classic, but it has been the recent advances in the theory of integrable non-linear partial differential equations and the consideration in Geometry of invariants of increasingly higher orders that has highlighted the interest...