Estimations C1 pour des problèmes paraboliques semi-linéaires
Annales de la Faculté des sciences de Toulouse : Mathématiques (1983)
- Volume: 5, Issue: 3-4, page 265-280
- ISSN: 0240-2963
Access Full Article
topHow to cite
topHaraux, A., and Kirane, M.. "Estimations C1 pour des problèmes paraboliques semi-linéaires." Annales de la Faculté des sciences de Toulouse : Mathématiques 5.3-4 (1983): 265-280. <http://eudml.org/doc/73153>.
@article{Haraux1983,
author = {Haraux, A., Kirane, M.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {semi-linear initial value problems; smoothing effect; positive solutions},
language = {fre},
number = {3-4},
pages = {265-280},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Estimations C1 pour des problèmes paraboliques semi-linéaires},
url = {http://eudml.org/doc/73153},
volume = {5},
year = {1983},
}
TY - JOUR
AU - Haraux, A.
AU - Kirane, M.
TI - Estimations C1 pour des problèmes paraboliques semi-linéaires
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1983
PB - UNIVERSITE PAUL SABATIER
VL - 5
IS - 3-4
SP - 265
EP - 280
LA - fre
KW - semi-linear initial value problems; smoothing effect; positive solutions
UR - http://eudml.org/doc/73153
ER -
References
top- [1] S. Agmon. «On the eigenfunctions and on the eigenvalues of general boundary value problems». Comm. Pure Appl. Math.15 (1962),116-147. Zbl0109.32701MR147774
- [2] N.D. Alikakos. «Lp bounds of solutions of reaction - diffusion equations». Comm. P. Diff. Eq.4 (1979), 827-868. Zbl0421.35009MR537465
- [3] H. Brezis. «Propriétés régularisantes de certains semi-groupes non linéaires». Israël J. Math.9 (1971 ), 513-534. Zbl0213.14903MR283635
- [4] H. Brezis. Cours de 3ème cycle Paris VI (1977).
- [5] H. Brezis et J.A. Goldstein. «Liouville theorems for some improperly posed problems». Dans Improperly posed boundary value problems. Carasso-Stone ed., Pitman (1975), 65-75. Zbl0318.35072MR477353
- [6] M.G. Crandall, A. Pazy et L. Tartar. «Remarks on generators of analytic semi-groups». Israël J. Math.32, 4 (1979), 363-374. Zbl0436.47028MR571090
- [7] C.M. Dafermos. «Asymptotic behavior of solutions of evolution equations». dans Nonlinear Evolution Equations, M.G. Crandall ed., Academic Press, New-York (1978) 103-123. Zbl0499.35015MR513814
- [8] G. Da Prato et P. Grisvard. «Equations d'évolution abstraites non linéaires de type parabolique». C.R.A.S.Paris t. 283 (1976), 709-711. Zbl0356.35048MR425694
- [9] J.P. Dias ET A. Haraux. «Smoothing effect and asymptotic behavior for the solutions of a nonlinear time dependent system». Proc. Roy. Soc. Edinburgh87A (1981), 289-303. Zbl0458.35054MR606337
- [10] L.C. Evans. «Application of nonlinear semi-group theory to certain partial differential equations, Nonlinear Evolution Equations , M.G. Crandall ed., Academic Press, New-York (1978). Zbl0471.35039
- [11] A. Friedman. «Partial differential equations». Halt, Rinehart and Winston, New-York (1969). Zbl0224.35002MR445088
- [12] J.K. Hale. «Ordinary differential equations». Wiley-Interscience, New-York (1969). Zbl0186.40901MR419901
- [13] J.K. Hale and P. Massatt. «Asymptotic behavior of gradient-like systems». To appear. Zbl0542.34027MR703689
- [14] D. Henry. «Geometric Theory of Semilinear Parabolic Equations». Lecture Notes in Math.. N° 842, Springer (1981 ). Zbl0456.35001MR610244
- [15] T. Kato. «Abstract evolution equations of parabolic type in Banach and Hilbert spaces». Nagoya Math. J.19 (1961), 93-125. Zbl0114.06102MR143065
- [16] J.P. La Salle. «Stability theory and invariance principles». Dynamical Systems, An International Symposium . ed. L. Cesari, J.K. Hale and J.P. La Salle, Academic Press, New-York (1976), Vol. I, 211-222. Zbl0356.34047MR594977
- [17] P.L. Lions. «Structure of the set of steady-state solutions and asymptotic behavior of semilinear heat equations». A paraître. Zbl0491.35057
- [18] H. Matano. «Convergence of solutions of one-dimensional semilinear parabolic equations». J. Math. Kyoto Univ., 18 (1978), 221-227. Zbl0387.35008MR501842
- [19] A. Pazy. «Semi-groups of operators and applications to partial differential equations». Univ. of Maryland Press (1974). MR512912
- [20] I. Segal. «Non-linear semi-groups». Ann. Math.78 (1963), 339-364. Zbl0204.16004MR152908
- [21] E.M. Stein. «Topics in harmonic analysis». Annals of Math. Studies, Princeton Univ. Press. Zbl0193.10502MR252961
- [22] H.B. Stewart. «Generation of analytic semi-groups by strongly elliptic operators». Trans. Amer. Math. Soc.199 (1974), 141-162. Zbl0264.35043MR358067
- [23] G.F. Webb. «A reaction-diffusion model for a deterministic diffusive epidemic». J. of Math. Anal. and Appl.84,1 (1981), 150-161. Zbl0484.92019MR639529
- [24] F.B. Weissler. «Semilinear evolution equations in Banach spaces». J. Funct. Anal.32 (1979), 277-296. Zbl0419.47031MR538855
Citations in EuDML Documents
top- M. Kirane, Global pointwise a priori bounds and large time behaviour for a nonlinear system describing the spread of infectious disease
- Salah Badraoui, Behaviour of global solutions for a system of reaction-diffusion equations from combustion theory
- Alain Haraux, Large time behaviour of the solutions to some nonlinear evolution equations
- Oleksiy Kapustyan, Olena Kapustian, Oleksandr Stanzytskyi, Ihor Korol, Uniform attractors in sup-norm for semi linear parabolic problem and application to the robust stability theory
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.